nsS-3

NETWORK SIMULATOR

ns-3 Model Library

Release ns-3.25

ns-3 project

March 24, 2016

10

11

Organization

Animation

2.1 NetAnim o e e e e

Antenna Module

3.1 Designdocumentation
3.2 UserDocumentation
3.3 Testing Documentation,

Ad Hoc On-Demand Distance Vector (AODYV)

4.1 Model Description e
Applications

Bridge NetDevice

BRITE Integration

7.1 Model Description oL
7.2 Usage o oo e
Buildings Module

8.1 Designdocumentation
8.2 User Documentation
8.3 Testing Documentation
84 References e

Click Modular Router Integration

9.1 Model Description
0.2 USAZE .« v v e e e e e e e e e e
93 Validation.

CSMA NetDevice

10.1 Overview of the CSMAmodel
10.2 CSMA ChannelModel
10.3 CSMA NetDevice Model
10.4 Using the CsmaNetDevice
105 CSMATracing o v v v v i e e et e e e
10,6 Summary e e e e e e

Data Collection

I1.1 Design . . . o oo o e

CONTENTS

13

.................. 13
.................. 14
.................. 14

17

.................. 17

19

21

23

.................. 23
.................. 24

27

.................. 27
.................. 33
.................. 36
.................. 38

39

.................. 39
.................. 40
.................. 42

43

.................. 43
.................. 44
.................. 45
.................. 46
.................. 47
.................. 48

49

12

13

14

15

16

17

18

19

20

11.2
11.3
11.4
11.5
11.6
11.7

Data Collection Helpers o 0 e e e e e e e
Probes
ColleCtors o o e e e e e e e
AGEIegators e e e e e e e e e
Adaptorso e e e
Scope/LImitations i it e e e e e e e e e e e e e e e

DSDV Routing

12.1
12.2

DSDV Routing OVerview o v vttt i it e e e e e e e e e e
References L

DSR Routing

13.1
13.2
13.3
13.4
13.5
13.6
13.7

DSR Routing OVerview it i e e e e e e e
DSRINStructions o e e e e e e e e e e e e e e e
Helper e e e e e e
Examples o . e e e e e
Validation L e e e e e e e e e
Limitations e e e e e e e e e
References L e e e e e e e

Emulation Overview

Energy Framework

15.1
15.2

Model Description e e e e
USAgE . . o o o e e e e e e e e

File Descriptor NetDevice

16.1
16.2

Model Description L. e e e e
USAge . . o o o e e e e e e e e e

Flow Monitor

17.1
17.2
17.3

Model Description o e e e e e e e e e
USage . . . o o e e e e e
Validationo e e e e e

Internet Models (IP, TCP, Routing, UDP, Internet Applications, Codel)

18.1
18.2
18.3
18.4
18.5
18.6

Internet Stack e e

Routing overview L o e e e e e e e
TCPmodels innS-3 L . e e e e e e e e e
Internet Applications Module Documentation

Low-Rate Wireless Personal Area Network (LR-WPAN)

19.1
19.2
19.3

Model Description o e e e e e e e e e e e
USage . . . o o e e e e e e
Validation

LTE Module

20.1
20.2
20.3
20.4
20.5

Design Documentationo e e e e e e e
User Documentation o it it e e e e e e e e e e e
Testing Documentation ot e e e e e e e e e e e e e e e e e
Profiling Documentation L e e e
References o L e e e

75
75
75

77
77
79
79
80
80
80
80

81

85
85
87

91
91
93

99
99
100
102

103
103
107
107
115
123
136

139
139
142
144

21

22

23

24

25

26

27

28

29

30

Wi-Fi Mesh Module Documentation

21.1 Design Documentation v vttt e e e e e e e e e e
21.2 User Documentation o v v it e e e e e e e e
21.3 Testing Documentation Lo e
21.4 References i i e e e e e e e e e e

MPI for Distributed Simulation

22.1 Current Implementation Details L.
22.2 Running Distributed Simulations
22.3 Tracing During Distributed Simulations

Mobility

23.1 Model Description e e e e
232 USAZE .« v v e
233 Validation.

Network Module

24.1 Packets e e
242 ErrorModel e
24.3 Node and NetDevices Overview i i v i it e e
244 Sockets APIS e e e e
245 Simple NetDevice e
246 QUEUES v o i e e e e e e e e

Optimized Link State Routing (OLSR)

25.1 Model Description e e
252 USAZE .« v v e e e e e e e e e e e e e e e e e e e
253 Validation.

OpenFlow switch support

26.1 Model Description v vt e e e e e e e e e e e e e
20.2 USAZE . . v v e e e e e e e e e e e e e e e e
26.3 Validation e

PointToPoint NetDevice

27.1 Overview of the PointToPointmodel
27.2 Point-to-Point Channel Model oL,
27.3 Using the PointToPointNetDevice
274 PointToPoint Tracing o o e

Propagation

28.1 PropagationLossModel
28.2 PropagationDelayModel
283 References L

Spectrum Module

29.1 Model Description v v i e e e e e e e e e e e
202 USAZE .« v v e e e e e e e e e e e e e e e e e e
203 Testing o i e e e e e e e e e e e e e e
29.4 Additional Models L e e e

6LoWPAN: Transmission of IPv6 Packets over IEEE 802.15.4 Networks

30.1 Model Description e e e e
302 USAe . . . v e e e e e e e e e e e e
30.3 Validation e

317
317
320
320
320

321
321
322
325

327
327
330
333

335
335
346
348
350
353
353

357
357
357
358

359
359
360
362

363
363
364
364
364

367
367
374
375

377
377
380
382
383

31 Tap NetDevice

31.1 TapBridge Model OVEIVIEW o v i i it e e e e e e e e e e e e e e e
31.2 Tap Bridge Channel Model e
31.3 Tap Bridge TracingModel e
31.4 Usingthe TapBridge e

32 Topology Input Readers

33 Traffic Control Layer

33.1 TrafficControl Layer o e e e e e e e e e e
332 Queue disCIplineso e e e e

33.3 pfifo_fast queue
33.4 RED queue disc
33.5 CoDel queue dis

34 UAN Framework

diSC . . e e e e

L

34.1 Model Description e e e e e e

342 Usage
34.3 Validation . . .

35 WAVE models

35.1 Model Description v v v i e

352 Usage
35.3 Validation . . .

36 Wi-Fi Module

36.1 Design Documentation oL e e e e e e e e
36.2 User Documentation e e e e
36.3 Testing Documentation e e e e e e e e

36.4 References . .

37 Wimax NetDevice

37.1 Scopeofthemodel
37.2 Usingthe Wimax models e
373 Wimax Attributes L. e

37.4 Wimax Tracing

375 Wimax MACmodel e
37.6 WimaxChannel and WimaxPhy models L oL

37.7 Channel model
37.8 Physical model

Bibliography

Index

391
391
396
396
396

397

399
399
401
406
407
409

413
413
419
422

425
425
430
436

439
439
448
455
455

457
457
458
459
460
460
464
464
464

467

473

ns-3 Model Library, Release ns-3.25

This is the ns-3 Model Library documentation. Primary documentation for the ns-3 project is available in five forms:
* ns-3 Doxygen: Documentation of the public APIs of the simulator
* Tutorial, Manual, and Model Library (this document) for the latest release and development tree
* ns-3 wiki

This document is written in reStructuredText for Sphinx and is maintained in the doc/models directory of ns-3’s
source code.

CONTENTS 1

http://www.nsnam.org/doxygen/index.html
http://www.nsnam.org/documentation/latest/
http://www.nsnam.org/ns-3-dev/documentation/
http://www.nsnam.org/wiki
http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/

ns-3 Model Library, Release ns-3.25

2 CONTENTS

CHAPTER
ONE

ORGANIZATION

This manual compiles documentation for ns-3 models and supporting software that enable users to construct network
simulations. It is important to distinguish between modules and models:

* ns-3 software is organized into separate modules that are each built as a separate software library. Individual
ns-3 programs can link the modules (libraries) they need to conduct their simulation.

* ns-3 models are abstract representations of real-world objects, protocols, devices, etc.

An ns-3 module may consist of more than one model (for instance, the internet module contains models for both
TCP and UDP). In general, ns-3 models do not span multiple software modules, however.

This manual provides documentation about the models of ns-3. It complements two other sources of documentation
concerning models:

¢ the model APIs are documented, from a programming perspective, using Doxygen. Doxygen for ns-3 models is
available on the project web server.

¢ the ns-3 core is documented in the developer’s manual. ns-3 models make use of the facilities of the core, such
as attributes, default values, random numbers, test frameworks, etc. Consult the main web site to find copies of
the manual.

Finally, additional documentation about various aspects of ns-3 may exist on the project wiki.

A sample outline of how to write model library documentation can be found by executing the create-module.py
program and looking at the template created in the file new-module/doc/new-module.rst.

S cd src
./create-module.py new-module

The remainder of this document is organized alphabetically by module name.

If you are new to ns-3, you might first want to read below about the network module, which contains some fundamental
models for the simulator. The packet model, models for different address formats, and abstract base classes for objects
such as nodes, net devices, channels, sockets, and applications are discussed there.

http://www.doxygen.org
http://www.nsnam.org/docs/doxygen/index.html
http://www.nsnam.org
http://www.nsnam.org/wiki

ns-3 Model Library, Release ns-3.25

4 Chapter 1. Organization

CHAPTER
TWO

ANIMATION

Animation is an important tool for network simulation. While ns-3 does not contain a default graphical animation
tool, we currently have two ways to provide animation, namely using the PyViz method or the NetAnim method. The
PyViz method is described in http://www.nsnam.org/wiki/PyViz.

We will describe the NetAnim method briefly here.

2.1 NetAnim

NetAnim is a standalone, Qt4-based software executable that uses a trace file generated during an ns-3 simulation to
display the topology and animate the packet flow between nodes.

- Stals | Packets |

@ B rumnjess b Cmsen smime o IRBHBERRER ¢ toesls) temsae [T ¢ P w7

| Node aal

A v 0

e 2

| = Progerty Value
‘ Node id 0

Database Server Server Node Desc... | 0
v Node Position

Node X | 10.00
NodeY | 0.00
v Node Color | [l 255, 0,0]...
Red 255
Green 0
Blue 0
Alpha 255
(“NodoSizo 700 |
Node Reso... | [Usersfjchn/D...
‘ = Show Nod... False
) v Ipvé Addresses
Firewall 5 10.1.1.1
¥ Mac Addresses
00:00:0...

Access Point

Not Playing

Figure 2.1: An example of packet animation on wired-links

In addition, NetAnim also provides useful features such as tables to display meta-data of packets like the image below

A way to visualize the trajectory of a mobile node

http://www.nsnam.org/wiki/PyViz

ns-3 Model Library, Release ns-3.25

Packet count 11208 TxTime From Node Id | To Node Id Meta Info
From Node Id 1 s | 1 0.0301008 1 TCP 50000 > 49153 SYN ACK Seq=0 Ack=1 Win=65535

To Node Id 2 0.0711264 1

Transmission time >= 0

TCP 50000 > 49153 ACK Seq=1 Ack=537 Win=65535

3 0.112581 1 TCP 50000 > 49153 ACK Seq=1 Ack=1609 Win=65535

| Apply filter |
4 0.154035 1 TCP 50000 > 49153 ACK Seq=1 Ack=2681 Win=65535
Select All
=B s 0195027 1 TCP 50000 > 49153 ACK Seq=1 Ack=3753 Win=65535
DeSelect All
) All Packets 6 0.195952 1 TCP 50000 > 49153 ACK Seq=1 Ack=4825 Win=65535
7: :,“:"‘“ 7 0236482 1 TCP 50000 > 49153 ACK Seq=1 Ack=5897 Win=65535
_wif 8 0237406 1 TCP 50000 > 49153 ACK Seq=1 Ack=6969 Win=65535
| Arp
| Ipvé 3 0.238331 1 TCP 50000 > 49153 ACK Seq=1 Ack=8041 Win=65535
| lcmpv4 T T
‘ Udpp 10 0277936 1 TCP 50000 > 49153 ACK Seq=1 Ack=9113 Win=65535
@‘IZZV 11 0.278861 1 TCP 50000 > 49153 ACK Seq=1 Ack=10185 Win=65535
(. O'Sd' 12 0279786 1 TCP 50000 > 49153 ACK Seq=1 Ack=11257 Win=65535
| Dsdv

13 0.28071 1 TCP 50000 > 49153 ACK Seq=1 Ack=12329 Win=65535

14 0318928 1 TCP 50000 > 49153 ACK Seg=1 Ack=13401 Win=65535
15 0319853 1 TCP 50000 > 49153 ACK Seq=1 Ack=14473 Win=65535
16 0320778 1 TCP 50000 > 49153 ACK Seg=1 Ack=15545 Win=65535
17 0.321702 1 TCP 50000 > 49153 ACK Seq=1 Ack=16617 Win=65535
18 0322627 1 TCP 50000 > 49153 ACK Seq=1 Ack=17689 Win=65535
19 0323552 1 TCP 50000 > 49153 ACK Seq=1 Ack=18761 Win=65535
20 0.35992 1 TCP 50000 > 49153 ACK Seq=1 Ack=19833 Win=65535
21 0.360845 1 TCP 50000 > 49153 ACK Seq=1 Ack=20905 Win=65535

22 036177 1 TCP 50000 > 49153 ACK Seq=1 Ack=21977 Win=65535

©O © © © ©o © © ©o 0 0o 0o 0o 0o 0o ool o|lo 0ol oo

23 0.362694 1 TCP 50000 > 49153 ACK Seq=1 Ack=23049 Win=65535

Figure 2.2: An example of tables for packet meta-data with protocol filters

6 Chapter 2. Animation

ns-3 Model Library, Release ns-3.25

8 00
€1 » ——(~250ms Simtime 0 [| 4 | Grid Lnes | 17 LEJ Nodesize 2 (5] From: [Al 3| To: [Al 3]
’\ Entry count 100
s Node Id |0 4
.......... Add Nodeld |1 &

' Add NodeId | None 4|
.......... Add Nodeld | None 4|
0 Aol fiter |

Show Trajectory ~

Time Nodeld X coord Y cc

"N‘ () 1 0 0 110.168 | 77.1
|®‘ 2 0 |0 110.168 | 77.1
(P | (30250 110.637 | 76.9
4 0750 111.106 | 76.7

38.04 s 1750 112.045 | 76.4

i T s 2 0 111.968 | 76.1

7 2250 111.89 |75.9

' 8 3250 111.582 | 74.9

9 3750 111.428 | 74.5

10 45 [0 111.811 | 73.8

1m 5 |0 112.066 | 73.4

12 5750 112.449 | 72.7

13 6.25(0 112.867 | 73.0

14 6.5 |0 113.076 | 73.2

15 7.75|0 114.121 | 73.8

6 8 |0 114.342 | 74.0

17 87510 115.006 | 74.3

!

Figure 2.3: An example of the trajectory of a mobile node

2.1. NetAnim 7

ns-3 Model Library, Release ns-3.25

A way to display the routing-tables of multiple nodes at various points in time

MNode: 0 Time: 05 Ipv4ListSouting table Mode: 1 Time: Os Ipv4ListSouting table

Nade: 2 Time: Os Ipv4ListAouting table
Priority: 0 Protocel: ns3:ipv4StaticRouting Priority: 0 Protocol: ns3::pvaStaticRouting Priority: 0 Protocol: ns3:: Ipv4SlancRGmlng
Destindlion Gateway G enmass " Fiags Metric Fler Uselface | Destinglion —Gateway G enmas< -~ Fiags Metric Hel Use ltace Desllnzulon Gamway SK Flags Metric Ret Use Iface
127.0.0.0 .0.0.0 127.0.00 0.0.00 0 U Cl 0 - -0
10.1.3.0 0.0.00 255 255 250U 0 - - 1 10.1.3.0 0.0.00 255 255 280U 0 - - 1 10.1 .S.D U.D.O.Cl 255.255.255.0 uo - -1
Priority: -10 Protocol: ns3::ipv4Global Routing Priority: -10 Protocol: ne3:Ipv4Global Routing Priority: -10 Protocol: ne3::ipv4Global Aouting

Desllnajlon Gawwav Genmask Flags Metric Aet Use Iface Desllnallon Gatswa\r Genmask Flags Metric Rel Use Iface Destination Gateway Genmask Flags Metric Rel Use llace

011 0.1.3.2 255.255.255.255 UH - - -1 0.1.1. 0.13.2 255, 255.255.255 H- - -1 10.1.1.1 10.1.3.21 255.255.256 255 UH - - -
lm 12 1013,21 255.255255355 UH - - - 1 IDI 12 101321 255255255255 UH - - - 1 101321 255255255255 UH - - - 1
10130 0.0.00 2552552550 U - - - 1 10.1.3.0 0.0.00 2552552550 U - - - 1 0.0.0.0 2552552550 U - - - 1
10120 10.1.3.21 255255255.0 UG ST | 10.1.20 101321 2552552550 UG SR | 10.1.3.21 255.255.255.0 UG S |
127.000 10132 255000 UG - -1 127.000 10131 255000 UG - -1 10.1.31 255000 UG S|
127.000 10133 255.0. o 0 uG -1 127.0.00 10133 255000 UG -1 10132 255000 UG 1
127.000 10.1.3.4 00 UG -1 127.0.00 10.1.34 255000 UG -1 10.1.34 255000 UG 1
127.000 10135 uG -1 127.0.00 10.1.35 255000 UG -1 10135 255000 UG 1
127.000 10.1.36 uG -1 127.0.00 10.1.36 255000 UG -1 10.1.36 255000 UG 1
127.000 10137 ug - -1 127.0.00 10.1.37 255000 UG -1 10.137 255000 UG 1
127.000 10.1.38 UG -1 127.000 10.1.38 255000 UG -1 10.1.38 255000 UG 1
127.000 10.1.38 ug - -1 127.000 10138 255000 UG - -1 10.1.39 255000 UG - 1
127.0.00 10.1.3.10 UG - -1 127.0.00 10.1.3.10 255.0.00 uGg - -1 10.1.3.10 255.0.0.0 uGg - =1
127.0.00 10.1.3.11 uG -1 127.0.00 10.1.3.11 255.000 ug - =1 10.1.3.11 255.0.00 uG =1
127.0.00 10.1.3.12 uG - -1 127.0.00 10.1.312 255.0.00 ug - -1 10.1.3.12 255.0.0.0 uG =1
127.0.00 10.1.3.13 uG - -1 127.0.00 10.1.313 255.0.00 ug - -1 10.1.3.13 255.0.0.0 ug - =1
127.000 10.1.3.14 ug - -1 127.000 101314 255000 UG - -1 10.1.314 255000 UG - -1
127.000 10.1.3.15 uG -1 127.000 101315 255.0.00 UG - -1 10.1.315 255000 UG -1
127.000 10.1.3.16 uG - -1 10.1.316 255000 UG - -1 10.1.316 255000 UG -1
127.000 10.1.3.147 uG - -1 10.1.317 255000 UG - -1 10.1.317 255000 UG -1
127.000 10.1.3.18 ug - -1 10.1.318 255000 UG - -1 10.1.318 255.000 UG -1
127.000 10.1.3.19 ug - -1 10.1.319 255.0. 0 o ug - -1 10.1.3.19 255.u.0.0 UG -1
127.000 10.1.3.20 uG -1 10.1.3.20 255.0. uG ERE | 10.1.3.20 255.0. -1
10.1.1.0 101321 255 2552550 uG -1 10.1.3.21 255 2552550 uG - - =1 101321 255 255 2550 uG -1
127.000 10.1.3.21 uG 10.1.321 255000 UG -1 10,1321 255.0.0.0 1
10010 109321 2552552550 UG -1 101321 250.255.2550 UG - 1 101321 255.255.255 D UG 1
127.000 10.1.3.21 ug - 1 101321 255.000 UG - 1 10,1321 255000 UG - - - 1
127.0.00 10.1.3.21 255.0.0.0 UG - 1 10.1.3.21 255.0.00 uGc - 1 10.1.3.21 255.0.0.0 uc - - -1

A way to display counters associated with multiple nodes as a chart or a table

14000 -

12000 -

10000 ~

8000 -

Congestion Window

6000 -

4000 -

2000 -

Time

A way to view the timeline of packet transmit and receive events

2.1.1 Methodology

The class ns3::AnimationInterface is responsible for the creation the trace XML file. AnimationInterface uses the
tracing infrastructure to track packet flows between nodes. AnimationInterface registers itself as a trace hook for tx and
rx events before the simulation begins. When a packet is scheduled for transmission or reception, the corresponding
tx and rx trace hooks in AnimationInterface are called. When the rx hooks are called, AnimationInterface will be
aware of the two endpoints between which a packet has flowed, and adds this information to the trace file, in XML

Chapter 2. Animation

ns-3 Model Library, Release ns-3.25

| Counter Tables 3| (] SimTime (j Font Size @ . Flowhon file | ["Double Counter 1 :)

1.0416
1.04252

1.0436
1.04452

1.04652

1.049582
1.05084

1.05192

| Export Table |

Time a 12 3 4 5 B|7(8|9[10(11
1 0.1 |134.532
2 0.1 101.387
a 0.2 |164.8
4 0.2 168.151
5 0.3 | 154.444
& 03 115.763
7 04 |179.264
8 0.4 126.946
9 0.5 |144.204
10 0.5 136.543
1 0.6 | 118.857
12 0.6 158.689
13 07 174138
14 0.7 138.387
15 0.8 | 101.934
16 0.8 149,555
17 0.9 | 195.25
68 09 192.968
19 1 132.337
20 1 114.404
21 1.1 | 142.992
2z 141 190.218
2a |12 | 122185

2.1. NetAnim

ns-3 Model Library, Release ns-3.25

format along with the corresponding tx and rx timestamps. The XML format will be discussed in a later section. It is
important to note that AnimationInterface records a packet only if the rx trace hooks are called. Every tx event must
be matched by an rx event.

2.1.2 Downloading NetAnim

If NetAnim is not already available in the ns-3 package you downloaded, you can do the following:

Please ensure that you have installed mercurial. The latest version of NetAnim can be downloaded using mercurial
with the following command:

S hg clone http://code.nsnam.org/netanim

2.1.3 Building NetAnim
Prerequisites

Qt4 (4.8 and over) is required to build NetAnim. This can be obtained using the following ways:
For Debian/Ubuntu Linux distributions:
$ apt-get install gt4-dev-tools

For Red Hat/Fedora based distribution:

&

> yum install gt4
$ yum install gt4-devel

For Mac/OSX, see http://qt.nokia.com/downloads/

Build steps

To build NetAnim use the following commands:

$ cd netanim

$ make clean

$ dgmake NetAnim.pro (For MAC Users: gmake —-spec macx—g++ NetAnim.pro)
S make

Note: gmake could be “gmake-qt4” in some systems

This should create an executable named “NetAnim” in the same directory:

$ 1ls -1 NetAnim
—rwxr-xr-x 1 john john 390395 2012-05-22 08:32 NetAnim

2.1.4 Usage

Using NetAnim is a two-step process

Step 1:Generate the animation XML trace file during simulation using “ns3::Animationlnterface” in the ns-3 code
base.

Step 2:Load the XML trace file generated in Step 1 with the offline Qt4-based animator named NetAnim.

10 Chapter 2. Animation

http://qt.nokia.com/downloads/

ns-3 Model Library, Release ns-3.25

Step 1: Generate XML animation trace file

The class “AnimationInterface” under “src/netanim” uses underlying ns-3 trace sources to construct a timestamped
ASCII file in XML format.

Examples are found under src/netanim/examples Example:

./waf -d debug configure —--enable-examples
./waf —-run "dumbbell-animation"

The above will create an XML file dumbbell-animation.xml

Mandatory

1. Ensure that your program’s wscript includes the “netanim” module. An example of such a wscript is at
src/netanim/examples/wscript.

2. Include the header [#include “ns3/netanim-module.h”] in your test program
3. Add the statement
AnimationInterface anim ("animation.xml"); // where "animation.xml" is any arbitrary filename

[for versions before ns-3.13 you also have to use the line “anim.SetXMLOutput() to set the XML mode and also use
anim.StartAnimation();]

Optional

The following are optional but useful steps:

// Step 1
anim.SetMobilityPollInterval (Seconds (1));

AnimationInterface records the position of all nodes every 250 ms by default. The statement above sets the periodic
interval at which AnimationInterface records the position of all nodes. If the nodes are expected to move very little, it
is useful to set a high mobility poll interval to avoid large XML files.

// Step 2
anim.SetConstantPosition (Ptr< Node > n, double x, double vy);

AnimationInterface requires that the position of all nodes be set. In ns-3 this is done by setting an associated Mobili-
tyModel. “SetConstantPosition” is a quick way to set the x-y coordinates of a node which is stationary.

// Step 3
anim.SetStartTime (Seconds(150)); and anim.SetStopTime (Seconds (150));

AnimationInterface can generate large XML files. The above statements restricts the window between which Ani-
mationInterface does tracing. Restricting the window serves to focus only on relevant portions of the simulation and
creating manageably small XML files

// Step 4
AnimationInterface anim ("animation.xml'", 50000);

Using the above constructor ensures that each animation XML trace file has only 50000 packets. For example, if
AnimationInterface captures 150000 packets, using the above constructor splits the capture into 3 files

* animation.xml - containing the packet range 1-50000

* animation.xml-1 - containing the packet range 50001-100000

2.1. NetAnim 11

ns-3 Model Library, Release ns-3.25

* animation.xml-2 - containing the packet range 100001-150000

// Step 5
anim.EnablePacketMetadata (true);

With the above statement, AnimationInterface records the meta-data of each packet in the xml trace file. Metadata
can be used by NetAnim to provide better statistics and filter, along with providing some brief information about the
packet such as TCP sequence number or source & destination IP address during packet animation.

CAUTION: Enabling this feature will result in larger XML trace files. Please do NOT enable this feature when using
Wimax links.

// Step 6
anim.UpdateNodeDescription (5, "Access-point");

With the above statement, AnimationInterface assigns the text “Access-point” to node 5.
// Step 7
anim.UpdateNodeSize (6, 1.5, 1.5);

With the above statement, AnimationlInterface sets the node size to scale by 1.5. NetAnim automatically scales the
graphics view to fit the oboundaries of the topology. This means that NetAnim, can abnormally scale a node’s size too
high or too low. Using AnimationInterface::UpdateNodeSize allows you to overwrite the default scaling in NetAnim
and use your own custom scale.

// Step 8
anim.UpdateNodeCounter (89, 7, 3.4);

With the above statement, AnimationInterface sets the counter with Id == 89, associated with Node 7 with the value
3.4. The counter with Id 89 is obtained using AnimationInterface:: AddNodeCounter. An example usage for this is in
src/netanim/examples/resource-counters.cc.

Step 2: Loading the XML in NetAnim
1. Assuming NetAnim was built, use the command ”./NetAnim” to launch NetAnim. Please review the section
“Building NetAnim” if NetAnim is not available.

2. When NetAnim is opened, click on the File open button at the top-left corner, select the XML file generated
during Step 1.

3. Hit the green play button to begin animation.

Here is a video illustrating this http://www.youtube.com/watch?v=tz_hUuNwFDs

2.1.5 Wiki

For detailed instructions on installing “NetAnim”, F.A.Qs and loading the XML trace file (mentioned earlier) using
NetAnim please refer: http://www.nsnam.org/wiki/NetAnim

12 Chapter 2. Animation

http://www.youtube.com/watch?v=tz_hUuNwFDs
http://www.nsnam.org/wiki/NetAnim

CHAPTER
THREE

ANTENNA MODULE

3.1 Design documentation

3.1.1 Overview

The Antenna module provides:

1. a new base class (AntennaModel) that provides an interface for the modeling of the radiation pattern of an
antenna;

2. aset of classes derived from this base class that each models the radiation pattern of different types of antennas.

3.1.2 AntennaModel

The AntennaModel uses the coordinate system adopted in [Balanis] and depicted in Figure Coordinate system of the
AntennaModel. This system is obtained by traslating the cartesian coordinate system used by the ns-3 MobilityModel
into the new origin o which is the location of the antenna, and then transforming the coordinates of every generic
point p of the space from cartesian coordinates (x,y, z) into spherical coordinates (7,8, ¢). The antenna model ne-
glects the radial component r, and only considers the angle components (6, ¢). An antenna radiation pattern is then
expressed as a mathematical function g(6,) — R that returns the gain (in dB) for each possible direction of trans-
mission/reception. All angles are expressed in radians.

Figure 3.1: Coordinate system of the AntennaModel

13

ns-3 Model Library, Release ns-3.25

3.1.3 Provided models

In this section we describe the antenna radiation pattern models that are included within the antenna module.

IsotropicAntennaModel

This antenna radiation pattern model provides a unitary gain (0 dB) for all direction.

CosineAntennaModel

This is the cosine model described in [Chunjian]: the antenna gain is determined as:

00 - (452)

2
where ¢ is the azimuthal orientation of the antenna (i.e., its direction of maximum gain) and the exponential
3
201logq (cos d’%%)

n=—

determines the desired 3dB beamwidth ¢345. Note that this radiation pattern is independent of the inclination angle 6.

A major difference between the model of [Chunjian] and the one implemented in the class CosineAntennaModel is that
only the element factor (i.e., what described by the above formulas) is considered. In fact, [Chunjian] also considered
an additional antenna array factor. The reason why the latter is excluded is that we expect that the average user would
desire to specify a given beamwidth exactly, without adding an array factor at a latter stage which would in practice
alter the effective beamwidth of the resulting radiation pattern.

ParabolicAntennaModel

This model is based on the parabolic approximation of the main lobe radiation pattern. It is often used in the context
of cellular system to model the radiation pattern of a cell sector, see for instance [R4-092042a] and [Calcev]. The
antenna gain in dB is determined as:

2
9ap(¢,0) = —min <12 (¢’ — ¢°> ,Amam)

3dB

where ¢ is the azimuthal orientation of the antenna (i.e., its direction of maximum gain), ¢34p is its 3 dB beamwidth,
and A,,4. is the maximum attenuation in dB of the antenna. Note that this radiation pattern is independent of the
inclination angle 6.

3.2 User Documentation

The antenna moduled can be used with all the wireless technologies and physical layer models that support it. Cur-
rently, this includes the physical layer models based on the SpectrumPhy. Please refer to the documentation of each of
these models for details.

3.3 Testing Documentation

In this section we describe the test suites included with the antenna module that verify its correct functionality.

14 Chapter 3. Antenna Module

ns-3 Model Library, Release ns-3.25

3.3.1 Angles

The unit test suite angles verifies that the Angles class is constructed properly by correct conversion from 3D
cartesian coordinates according to the available methods (construction from a single vector and from a pair of vectors).
For each method, several test cases are provided that compare the values (¢, #) determied by the constructor to known
reference values. The test passes if for each case the values are equal to the reference up to a tolerance of 10~1° which
accounts for numerical errors.

3.3.2 DegreesToRadians

The unit test suite degrees-radians verifies that the methods DegreesToRadians and
RadiansToDegrees work properly by comparing with known reference values in a number of test cases.
Each test case passes if the comparison is equal up to a tolerance of 10~!? which accounts for numerical errors.

3.3.3 IsotropicAntennaModel

The unit test suite 1 sot ropic—antenna-model checks that the IsotropicAntennaModel class works prop-
erly, i.e., returns always a OdB gain regardless of the direction.

3.3.4 CosineAntennaModel

The unit test suite cosine-antenna-model checks that the CosineAntennaModel class works properly.
Several test cases are provided that check for the antenna gain value calculated at different directions and for different
values of the orientation, the reference gain and the beamwidth. The reference gain is calculated by hand. Each test
case passes if the reference gain in dB is equal to the value returned by CosineAntennaModel within a tolerance
of 0.001, which accounts for the approximation done for the calculation of the reference values.

3.3.5 ParabolicAntennaModel

The unit test suite parabolic—-antenna-model checks thatthe ParabolicAntennaModel class works prop-
erly. Several test cases are provided that check for the antenna gain value calculated at different directions and for
different values of the orientation, the maximum attenuation and the beamwidth. The reference gain is calculated by
hand. Each test case passes if the reference gain in dB is equal to the value returned by ParabolicAntennaModel
within a tolerance of 0.001, which accounts for the approximation done for the calculation of the reference values.

3.3. Testing Documentation 15

ns-3 Model Library, Release ns-3.25

16 Chapter 3. Antenna Module

CHAPTER
FOUR

AD HOC ON-DEMAND DISTANCE VECTOR (AODV)

This model implements the base specification of the Ad Hoc On-Demand Distance Vector (AODV) protocol. The
implementation is based on RFC 3561.

The model was written by Elena Buchatskaia and Pavel Boyko of ITTP RAS, and is based on the ns-2 AODV model
developed by the CMU/MONARCH group and optimized and tuned by Samir Das and Mahesh Marina, University of
Cincinnati, and also on the AODV-UU implementation by Erik Nordstrém of Uppsala University.

4.1 Model Description

The source code for the AODV model lives in the directory src/aodv.

4.1.1 Design

Class ns3::aodv: :RoutingProtocol implements all functionality of service packet exchange and inherits
from ns3::Ipv4RoutingProtocol. The base class defines two virtual functions for packet routing and for-
warding. The first one, ns3: :aodv: :RouteOutput, is used for locally originated packets, and the second one,
ns3::aodv::Routelnput, is used for forwarding and/or delivering received packets.

Protocol operation depends on many adjustable parameters. Parameters for this functionality are attributes of
ns3::aodv: :RoutingProtocol. Parameter default values are drawn from the RFC and allow the en-
abling/disabling protocol features, such as broadcasting HELLO messages, broadcasting data packets and so on.

AODV discovers routes on demand. Therefore, the AODV model buffers all packets while
a route request packet (RREQ) is disseminated. A packet queue is implemented in aodv-
rqueue.cc. A smart pointer to the packet, ns3::Ipv4RoutingProtocol::ErrorCallback,

ns3::Ipv4RoutingProtocol: :UnicastForwardCallback, and the IP header are stored in this
queue. The packet queue implements garbage collection of old packets and a queue size limit.

The routing table implementation supports garbage collection of old entries and state machine, defined in the standard.
It is implemented as a STL map container. The key is a destination IP address.

Some elements of protocol operation aren’t described in the RFC. These elements generally concern cooperation of
different OSI model layers. The model uses the following heuristics:

* This AODV implementation can detect the presence of unidirectional links and avoid them if necessary. If the
node the model receives an RREQ for is a neighbor, the cause may be a unidirectional link. This heuristic is
taken from AODV-UU implementation and can be disabled.

* Protocol operation strongly depends on broken link detection mechanism. The model implements two such
heuristics. First, this implementation support HELLO messages. However HELLO messages are not a good
way to perform neighbor sensing in a wireless environment (at least not over 802.11). Therefore, one may ex-
perience bad performance when running over wireless. There are several reasons for this: 1) HELLO messages

17

http://tools.ietf.org/html/rfc3561.html

ns-3 Model Library, Release ns-3.25

are broadcasted. In 802.11, broadcasting is often done at a lower bit rate than unicasting, thus HELLO messages
can travel further than unicast data. 2) HELLO messages are small, thus less prone to bit errors than data trans-
missions, and 3) Broadcast transmissions are not guaranteed to be bidirectional, unlike unicast transmissions.
Second, we use layer 2 feedback when possible. Link are considered to be broken if frame transmission results
in a transmission failure for all retries. This mechanism is meant for active links and works faster than the first
method.

The layer 2 feedback implementation relies on the TxEr rHeader trace source, currently supported in AdhocWifiMac
only.

4.1.2 Scope and Limitations

The model is for IPv4 only. The following optional protocol optimizations are not implemented:
1. Expanding ring search.
2. Local link repair.
3. RREP, RREQ and HELLO message extensions.

These techniques require direct access to IP header, which contradicts the assertion from the AODV RFC that AODV
works over UDP. This model uses UDP for simplicity, hindering the ability to implement certain protocol optimiza-
tions. The model doesn’t use low layer raw sockets because they are not portable.

4.1.3 Future Work

No announced plans.

18 Chapter 4. Ad Hoc On-Demand Distance Vector (AODV)

CHAPTER
FIVE

APPLICATIONS

Placeholder chapter

19

ns-3 Model Library, Release ns-3.25

20

Chapter 5. Applications

CHAPTER
SIX

BRIDGE NETDEVICE

Placeholder chapter

Some examples of the use of Bridge NetDevice can be found in examples/csma/ directory.

21

ns-3 Model Library, Release ns-3.25

22

Chapter 6. Bridge NetDevice

CHAPTER
SEVEN

BRITE INTEGRATION

This model implements an interface to BRITE, the Boston university Representative Internet Topology gEnerator .
BRITE is a standard tool for generating realistic internet topologies. The ns-3 model, described herein, provides
a helper class to facilitate generating ns-3 specific topologies using BRITE configuration files. BRITE builds the
original graph which is stored as nodes and edges in the ns-3 BriteTopolgyHelper class. In the ns-3 integration of
BRITE, the generator generates a topology and then provides access to leaf nodes for each AS generated. ns-3 users
can than attach custom topologies to these leaf nodes either by creating them manually or using topology generators
provided in ns-3.

There are three major types of topologies available in BRITE: Router, AS, and Hierarchical which is a combination of
AS and Router. For the purposes of ns-3 simulation, the most useful are likely to be Router and Hierarchical. Router
level topologies be generated using either the Waxman model or the Barabasi-Albert model. Each model has different
parameters that effect topology creation. For flat router topologies, all nodes are considered to be in the same AS.

BRITE Hierarchical topologies contain two levels. The first is the AS level. This level can be also be created by
using either the Waxman model or the Barabasi-Albert model. Then for each node in the AS topology, a router
level topology is constructed. These router level topologies can again either use the Waxman model or the Barbasi-
Albert model. BRITE interconnects these separate router topologies as specified by the AS level topology. Once the
hierarchical topology is constructed, it is flattened into a large router level topology.

Further information can be found in the BRITE user manual: http://www.cs.bu.edu/brite/publications/usermanual.pdf

7.1 Model Description

The model relies on building an external BRITE library, and then building some ns-3 helpers that call out to the library.
The source code for the ns-3 helpers lives in the directory src/brite/helper.

7.1.1 Design

To generate the BRITE topology, ns-3 helpers call out to the external BRITE library, and using a standard BRITE
configuration file, the BRITE code builds a graph with nodes and edges according to this configuration file. Please see
the BRITE documenation or the example configuration files in src/brite/examples/conf_files to get a better grasp of
BRITE configuration options. The graph built by BRITE is returned to ns-3, and a ns-3 implementation of the graph
is built. Leaf nodes for each AS are available for the user to either attach custom topologies or install ns-3 applications
directly.

! Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE: An Approach to Universal Topology Generation. In Proceedings
of the International Workshop on Modeling, Analysis and Simulation of Computer and Telecommunications Systems- MASCOTS ‘01, Cincinnati,
Ohio, August 2001.

23

http://www.cs.bu.edu/brite/publications/usermanual.pdf

ns-3 Model Library, Release ns-3.25

7.1.2 References

7.2 Usage

The brite-generic-example can be referenced to see basic usage of the BRITE interface. In summary, the BriteTopol-
ogyHelper is used as the interface point by passing in a BRITE configuration file. Along with the configuration file a
BRITE formatted random seed file can also be passed in. If a seed file is not passed in, the helper will create a seed
file using ns-3’s UniformRandomVariable. Once the topology has been generated by BRITE, BuildBriteTopology()
is called to create the ns-3 representation. Next IP Address can be assigned to the topology using either Assig-
nlpv4Addresses() or AssignlpvoAddresses(). It should be noted that each point-to-point link in the topology will
be treated as a new network therefore for IPV4 a /30 subnet should be used to avoid wasting a large amount of the
available address space.

Example BRITE configuration files can be found in /src/brite/examples/conf_files/. ASBarbasi and ASWaxman are
examples of AS only topologies. The RTBarabasi and RTWaxman files are examples of router only topologies. Finally
the TD_ASBarabasi_RTWaxman configuration file is an example of a Hierarchical topology that uses the Barabasi-
Albert model for the AS level and the Waxman model for each of the router level topologies. Information on the
BRITE parameters used in these files can be found in the BRITE user manual.

7.2.1 Building BRITE Integration

The first step is to download and build the ns-3 specific BRITE repository:

$ hg clone http://code.nsnam.org/BRITE
S cd BRITE
S make

This will build BRITE and create a library, libbrite.so, within the BRITE directory.

Once BRITE has been built successfully, we proceed to configure ns-3 with BRITE support. Change to your ns-3
directory:

S ./waf configure --with-brite=/your/path/to/brite/source --enable-examples

Make sure it says ‘enabled’ beside ‘BRITE Integration’. If it does not, then something has gone wrong. Either you
have forgotten to build BRITE first following the steps above, or ns-3 could not find your BRITE directory.
Next, build ns-3:

S ./waf

7.2.2 Examples

For an example demonstrating BRITE integration run:
5 ./waf —--run 'brite-generic-example'
By enabling the verbose parameter, the example will print out the node and edge information in a similar format

to standard BRITE output. There are many other command-line parameters including confFile, tracing, and nix,
described below:

confFile A BRITE configuration file. Many different BRITE configuration file examples exist in
the src/brite/examples/conf_files directory, for example, RTBarabasi20.conf and RTWaxman.conf.
Please refer to the conf_files directory for more examples.

tracing Enables ascii tracing.

24 Chapter 7. BRITE Integration

ns-3 Model Library, Release ns-3.25

nix Enables nix-vector routing. Global routing is used by default.
The generic BRITE example also support visualization using pyviz, assuming python bindings in ns-3 are enabled:

./waf --run brite-generic-example --vis

Simulations involving BRITE can also be used with MPI. The total number of MPI instances is passed to the BRITE
topology helper where a modulo divide is used to assign the nodes for each AS to a MPI instance. An example can be
found in src/brite/examples:

S mpirun -np 2 ./waf —--run brite-MPI-example

Please see the ns-3 MPI documentation for information on setting up MPI with ns-3.

7.2. Usage 25

ns-3 Model Library, Release ns-3.25

26

Chapter 7. BRITE Integration

CHAPTER
EIGHT

BUILDINGS MODULE

cd .. include:: replace.txt

8.1 Design documentation

8.1.1 Overview

The Buildings module provides:
1. anew class (Building) that models the presence of a building in a simulation scenario;

2. anew class (MobilityBuildingInfo) thatallows to specify the location, size and characteristics of build-
ings present in the simulated area, and allows the placement of nodes inside those buildings;

3. a container class with the definition of the most useful pathloss models and the correspondent variables called
BuildingsPropagationLossModel.

4. a new propagation model (HybridBuildingsPropagationLossModel) working with the mobility
model just introduced, that allows to model the phenomenon of indoor/outdoor propagation in the presence
of buildings.

5. a simplified model working only with Okumura Hata (OhBuildingsPropagationLossModel) consid-
ering the phenomenon of indoor/outdoor propagation in the presence of buildings.

The models have been designed with LTE in mind, though their implementation is in fact independent from any
LTE-specific code, and can be used with other ns-3 wireless technologies as well (e.g., wifi, wimax).

The HybridBuildingsPropagationLossModel pathloss model included is obtained through a combination
of several well known pathloss models in order to mimic different environmental scenarios such as urban, suburban
and open areas. Moreover, the model considers both outdoor and indoor indoor and outdoor communication has to be
included since HeNB might be installed either within building and either outside. In case of indoor communication,
the model has to consider also the type of building in outdoor <-> indoor communication according to some general
criteria such as the wall penetration losses of the common materials; moreover it includes some general configuration
for the internal walls in indoor communications.

The OhBuildingsPropagationLossModel pathloss model has been created for simplifying the previous one
removing the thresholds for switching from one model to other. For doing this it has been used only one propagation
model from the one available (i.e., the Okumura Hata). The presence of building is still considered in the model;
therefore all the considerations of above regarding the building type are still valid. The same consideration can be
done for what concern the environmental scenario and frequency since both of them are parameters of the model
considered.

27

ns-3 Model Library, Release ns-3.25

8.1.2 The Building class

The model includes a specific class called Building which contains a ns3 Box class for defining the dimension of
the building. In order to implements the characteristics of the pathloss models included, the Building class supports
the following attributes:

* building type:
— Residential (default value)
— Office
— Commercial

* external walls type

- Wood

ConcreteWithWindows (default value)

Concrete WithoutWindows

StoneBlocks

¢ number of floors (default value 1, which means only ground-floor)
¢ number of rooms in x-axis (default value 1)
* number of rooms in y-axis (default value 1)
The Building class is based on the following assumptions:
* abuildings is represented as a rectangular parallelepiped (i.e., a box)
* the walls are parallel to the X, y, and z axis
* abuilding is divided into a grid of rooms, identified by the following parameters:
— number of floors
— number of rooms along the x-axis
— number of rooms along the y-axis
* the z axis is the vertical axis, i.e., floor numbers increase for increasing z axis values
¢ the x and y room indices start from 1 and increase along the x and y axis respectively

¢ all rooms in a building have equal size

8.1.3 The MobilityBuildinginfo class

The MobilityBuildingInfo class, which inherits from the ns3 class Object, is in charge of main-
taining information about the position of a node with respect to building. The information managed by
MobilityBuildingInfois:

¢ whether the node is indoor or outdoor
e if indoor:
— in which building the node is

— in which room the node is positioned (x, y and floor room indices)

28 Chapter 8. Buildings Module

ns-3 Model Library, Release ns-3.25

The class MobilityBuildingInfo is used by BuildingsPropagationLossModel class, which inherits
from the ns3 class PropagationLossModel and manages the pathloss computation of the single components and
their composition according to the nodes’ positions. Moreover, it implements also the shadowing, that is the loss due
to obstacles in the main path (i.e., vegetation, buildings, etc.).

It is to be noted that, MobilityBuildingInfo can be used by any other propagation model. However, based on
the information at the time of this writing, only the ones defined in the building module are designed for considering
the constraints introduced by the buildings.

8.1.4 ItuR1238PropagationLossModel

This class implements a building-dependent indoor propagation loss model based on the ITU P.1238 model, which
includes losses due to type of building (i.e., residential, office and commercial). The analytical expression is given in
the following.

Liotal = 201og f + Nlogd + Ly (n) — 28[dB]

where:

28 residential
N =< 30 office : power loss coefficient [dB]
22 commercial

4n residential
L=< 154+4(n—1) office
6+4+3(n—1) commercial

n : number of floors between base station and mobile (n > 1)
f : frequency [MHz]
d : distance (where d > 1) [m]

8.1.5 BuildingsPropagationLossModel

The BuildingsPropagationL.ossModel provides an additional set of building-dependent pathloss model elements that
are used to implement different pathloss logics. These pathloss model elements are described in the following subsec-
tions.

External Wall Loss (EWL)
This component models the penetration loss through walls for indoor to outdoor communications and vice-versa. The
values are taken from the [cost231] model.

* Wood ~ 4 dB

¢ Concrete with windows (not metallized) ~ 7 dB

* Concrete without windows ~ 15 dB (spans between 10 and 20 in COST231)

* Stone blocks ~ 12 dB

Internal Walls Loss (IWL)

This component models the penetration loss occurring in indoor-to-indoor communications within the same build-
ing. The total loss is calculated assuming that each single internal wall has a constant penetration loss Lg;,,, and

8.1. Design documentation 29

ns-3 Model Library, Release ns-3.25

approximating the number of walls that are penetrated with the manhattan distance (in number of rooms) between the
transmitter and the receiver. In detail, let x1, y1, Z2, y2 denote the room number along the x and y axis respectively
for user 1 and 2; the total loss Ly 1, is calculated as

Liwr = Lsiw(|z1 — 22| + |y1 — y2|)

Height Gain Model (HG)

This component model the gain due to the fact that the transmitting device is on a floor above the ground. In the
literature [turkmani] this gain has been evaluated as about 2 dB per floor. This gain can be applied to all the indoor to
outdoor communications and vice-versa.

Shadowing Model

The shadowing is modeled according to a log-normal distribution with variable standard deviation as function of the
relative position (indoor or outdoor) of the MobilityModel instances involved. One random value is drawn for each
pair of MobilityModels, and stays constant for that pair during the whole simulation. Thus, the model is appropriate
for static nodes only.

The model considers that the mean of the shadowing loss in dB is always 0. For the variance, the model considers
three possible values of standard deviation, in detail:

* outdoor (m_shadowingSigmaOutdoor, defaul value of 7dB) — X¢o ~ N(po0, 0(2)).
* indoor (m_shadowingSigmaIndoor, defaul value of 10 dB) — X ~ N (u1, o).
« external walls penetration (m_shadowingSigmaExtWalls, default value 5 dB) — Xw ~ N(uw, o)

The simulator generates a shadowing value per each active link according to nodes’ position the first time the link
is used for transmitting. In case of transmissions from outdoor nodes to indoor ones, and vice-versa, the standard
deviation (o1p) has to be calculated as the square root of the sum of the quadratic values of the standard deviatio in
case of outdoor nodes and the one for the external walls penetration. This is due to the fact that that the components
producing the shadowing are independent of each other; therefore, the variance of a distribution resulting from the
sum of two independent normal ones is the sum of the variances.

X ~ N(u,0*) and Y ~ N(v,7?)
Z=X+Y ~Z(p+v,0%+71°)

= 010 = /04 + 0%

8.1.6 Pathloss logics

In the following we describe the different pathloss logic that are implemented by inheriting from BuildingsPropaga-
tionLossModel.

HybridBuildingsPropagationLossModel

The HybridBuildingsPropagationLossModel pathloss model included is obtained through a combination
of several well known pathloss models in order to mimic different outdoor and indoor scenarios, as well as indoor-
to-outdoor and outdoor-to-indoor scenarios. In detail, the class HybridBuildingsPropagationLossModel
integrates the following pathloss models:

e OkumuraHataPropagationLossModel = (OH) (at frequencies > 2.3 GHz substituted by
Kun2600MhzPropagationLossModel)

30 Chapter 8. Buildings Module

ns-3 Model Library, Release ns-3.25

* ItuR1411LosPropagationLossModel and ItuR1411NlosOverRooftopPropagationLossModel (I1411)
* TtuR1238PropagationLossModel (11238)
* the pathloss elements of the BuildingsPropagationL.ossModel (EWL, HG, IWL)

The following pseudo-code illustrates how the different pathloss model elements described above are integrated in
HybridBuildingsPropagationLossModel:

if (txNode 1is outdoor)
then
if (rxNode is outdoor)
then
if (distance > 1 km)
then
if (rxNode or txNode is below the rooftop)
then
L = I1411
else
L = OH
else
L = I1411
else (rxNode is indoor)
if (distance > 1 km)
then
if (rxNode or txNode is below the rooftop)
L = I1411 + EWL + HG
else
L = OH + EWL + HG
else
L = I1411 + EWL + HG
else (txNode is indoor)
if (rxNode is indoor)

then
if (same building)
then
L = I1238 + IWL
else

L = I1411 + 2+EWL
else (rxNode 1is outdoor)
if (distance > 1 km)

then
if (rxNode or txNode is below the rooftop)
then
L = I1411 + EWL + HG
else
L = OH + EWL + HG
else

L = I1411 + EWL

We note that, for the case of communication between two nodes below rooftop level with distance is greater then 1
km, we still consider the 11411 model, since OH is specifically designed for macro cells and therefore for antennas
above the roof-top level.

For the ITU-R P.1411 model we consider both the LOS and NLoS versions. In particular, we considers the LoS
propagation for distances that are shorted than a tunable threshold (m_itul411NlosThreshold). In case on
NLoS propagation, the over the roof-top model is taken in consideration for modeling both macro BS and SC. In case
on NLoS several parameters scenario dependent have been included, such as average street width, orientation, etc. The
values of such parameters have to be properly set according to the scenario implemented, the model does not calculate
natively their values. In case any values is provided, the standard ones are used, apart for the height of the mobile and

8.1. Design documentation 31

ns-3 Model Library, Release ns-3.25

BS, which instead their integrity is tested directly in the code (i.e., they have to be greater then zero). In the following
we give the expressions of the components of the model.

We also note that the use of different propagation models (OH, 11411, 11238 with their variants) in HybridBuild-
ingsPropagationLossModel can result in discontinuities of the pathloss with respect to distance. A proper tuning of
the attributes (especially the distance threshold attributes) can avoid these discontinuities. However, since the behavior
of each model depends on several other parameters (frequency, node heigth, etc), there is no default value of these
thresholds that can avoid the discontinuities in all possible configurations. Hence, an appropriate tuning of these
parameters is left to the user.

OhBuildingsPropagationLossModel

The OhBuildingsPropagationLossModel class has been created as a simple means to solve the discontinuity
problems of HybridBuildingsPropagationLossModel without doing scenario-specific parameter tuning.
The solution is to use only one propagation loss model (i.e., Okumura Hata), while retaining the structure of the
pathloss logic for the calculation of other path loss components (such as wall penetration losses). The result is a model
that is free of discontinuities (except those due to walls), but that is less realistic overall for a generic scenario with
buildings and outdoor/indoor users, e.g., because Okumura Hata is not suitable neither for indoor communications nor
for outdoor communications below rooftop level.

In detail, the class OhBuildingsPropagationLossModel integrates the following pathloss models:
¢ OkumuraHataPropagationL.ossModel (OH)
* the pathloss elements of the BuildingsPropagationLossModel (EWL, HG, IWL)

The following pseudo-code illustrates how the different pathloss model elements described above are integrated in
OhBuildingsPropagationLossModel:

if (txNode is outdoor)
then
if (rxNode is outdoor)
then
L = OH
else (rxNode is indoor)
L = OH + EWL
else (txNode is indoor)
if (rxNode is indoor)

then
if (same building)
then
L = OH + IWL
else

L = OH + 2*xEWL
else (rxNode is outdoor)
L = OH + EWL

We note that OhBuildingsPropagationLossModel is a significant simplification with respect to HybridBuildingsProp-
agationLossModel, due to the fact that OH is used always. While this gives a less accurate model in some scenarios
(especially below rooftop and indoor), it effectively avoids the issue of pathloss discontinuities that affects Hybrid-
BuildingsPropagationLossModel.

32 Chapter 8. Buildings Module

ns-3 Model Library, Release ns-3.25

8.2 User Documentation

8.2.1 How to use buildings in a simulation

In this section we explain the basic usage of the buildings model within a simulation program.

Include the headers

Add this at the beginning of your simulation program:

#include <ns3/buildings-module.h>

Create a building

As an example, let’s create a residential 10 x 20 x 10 building:

double x_min = 0.0;

double x_max = 10.0;

double y_min = 0.0;

double y_max = 20.0;

double z_min = 0.0;

double z_max = 10.0;

Ptr<Building> b = CreateObject <Building> ();
b->SetBoundaries (Box (x_min, x_max, y_min, y_max, z_min, z_max));
b->SetBuildingType (Building::Residential);
b->SetExtWallsType (Building::ConcreteWithWindows) ;
b->SetNFloors (3);

b->SetNRoomsX (3);

b->SetNRoomsY (2);

This building has three floors and an internal 3 x 2 grid of rooms of equal size.

The helper class GridBuildingAllocator is also available to easily create a set of buildings with identical characteristics
placed on a rectangular grid. Here’s an example of how to use it:

Ptr<GridBuildingAllocator> gridBuildingAllocator;

gridBuildingAllocator = CreateObject<GridBuildingAllocator> ();
gridBuildingAllocator->SetAttribute ("GridWidth", UintegerValue (3));
gridBuildingAllocator—->SetAttribute ("LengthX", DoubleValue (7));
gridBuildingAllocator—->SetAttribute ("Length¥Y", DoubleValue (13));
gridBuildingAllocator->SetAttribute ("DeltaX", DoubleValue (3));
gridBuildingAllocator—->SetAttribute ("Delta¥Y", DoubleValue (3));
gridBuildingAllocator—->SetAttribute ("Height", DoubleValue (6));
gridBuildingAllocator—->SetBuildingAttribute ("NRoomsX", UintegerValue (2));
gridBuildingAllocator—->SetBuildingAttribute ("NRoomsY", UintegerValue (4));
gridBuildingAllocator—->SetBuildingAttribute ("NFloors", UintegerValue (2));
gridBuildingAllocator->SetAttribute ("MinX", DoubleValue (0));
gridBuildingAllocator—->SetAttribute ("MinY", DoubleValue (0));
gridBuildingAllocator—->Create (6);

(
(
(
(

This will create a 3x2 grid of 6 buildings, each 7 x 13 x 6 m with 2 x 4 rooms inside and 2 foors; the buildings are
spaced by 3 m on both the x and the y axis.

8.2. User Documentation 33

ns-3 Model Library, Release ns-3.25

Setup nodes and mobility models

Nodes and mobility models are configured as usual, however in order to use them with the buildings model you need
an additional call to BuildingsHelper: :Install (), so as to let the mobility model include the informtion on
their position w.r.t. the buildings. Here is an example:

MobilityHelper mobility;

mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
ueNodes.Create (2);

mobility.Install (ueNodes);

BuildingsHelper::Install (ueNodes);

It is to be noted that any mobility model can be used. However, the user is advised to make sure that the behavior
of the mobility model being used is consistent with the presence of Buildings. For example, using a simple random
mobility over the whole simulation area in presence of buildings might easily results in node moving in and out of
buildings, regardless of the presence of walls.

Place some nodes

You can place nodes in your simulation using several methods, which are described in the following.

Legacy positioning methods

Any legacy ns-3 positioning method can be used to place node in the simulation. The important additional step is to
For example, you can place nodes manually like this:

Ptr<ConstantPositionMobilityModel> mmO = enbNodes.Get (0)->GetObject<ConstantPositionMobilityModel>
Ptr<ConstantPositionMobilityModel> mml = enbNodes.Get (1)->GetObject<ConstantPositionMobilityModel>
mmO->SetPosition (Vector (5.0, 5.0, 1.5));

mml->SetPosition (Vector (30.0, 40.0, 1.5));

MobilityHelper mobility;

mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
ueNodes.Create (2);

mobility.Install (ueNodes);

BuildingsHelper::Install (ueNodes);

mmO0->SetPosition (Vector (5.0, 5.0, 1.5));

mml->SetPosition (Vector (30.0, 40.0, 1.5));

Alternatively, you could use any existing PositionAllocator class. The coordinates of the node will determine whether
it is placed outdoor or indoor and, if indoor, in which building and room it is placed.

Building-specific positioning methods

The following position allocator classes are available to place node in special positions with respect to buildings:

* RandomBuildingPositionAllocator: Allocate each position by randomly chosing a building from the
list of all buildings, and then randomly chosing a position inside the building.

* RandomRoomPositionAllocator: Allocate each position by randomly chosing a room from the list of
rooms in all buildings, and then randomly chosing a position inside the room.

* SameRoomPositionAllocator: Walks a given NodeContainer sequentially, and for each node allocate a
new position randomly in the same room of that node.

34 Chapter 8. Buildings Module

ns-3 Model Library, Release ns-3.25

* FixedRoomPositionAllocator: Generate a random position uniformly distributed in the volume of a
chosen room inside a chosen building.

Make the Mobility Model Consistent
Important: whenever you use buildings, you have to issue the following command after we have placed all nodes and
buildings in the simulation:

BuildingsHelper: :MakeMobilityModelConsistent ();

This command will go through the lists of all nodes and of all buildings, determine for each user if it is indoor or
outdoor, and if indoor it will also determine the building in which the user is located and the corresponding floor and
number inside the building.

Building-aware pathloss model

After you placed buildings and nodes in a simulation, you can use a building-aware pathloss model in a simulation
exactly in the same way you would use any regular path loss model. How to do this is specific for the wireless
module that you are considering (Ite, wifi, wimax, etc.), so please refer to the documentation of that model for specific
instructions.

8.2.2 Main configurable attributes

The Building class has the following configurable parameters:
* building type: Residential, Office and Commercial.
* external walls type: Wood, ConcreteWithWindows, ConcreteWithoutWindows and StoneBlocks.
* building bounds: a Box class with the building bounds.
* number of floors.
* number of rooms in x-axis and y-axis (rooms can be placed only in a grid way).

The BuildingMobilityLossModel parameter configurable with the ns3 attribute system is represented by the
bound (string Bounds) of the simulation area by providing a Box class with the area bounds. Moreover, by means of
its methos the following parameters can be configured:

¢ the number of floor the node is placed (default 0).
¢ the position in the rooms grid.

The BuildingPropagationLossModel class has the following configurable parameters configurable with the
attribute system:

* Frequency: reference frequency (default 2160 MHz), note that by setting the frequency the wavelength is set
accordingly automatically and viceversa).

* Lambda: the wavelength (0.139 meters, considering the above frequency).
* ShadowSigmaOutdoor: the standard deviation of the shadowing for outdoor nodes (defaul 7.0).
* ShadowSigmaIndoor: the standard deviation of the shadowing for indoor nodes (default 8.0).

* ShadowSigmaExtWalls: the standard deviation of the shadowing due to external walls penetration for
outdoor to indoor communications (default 5.0).

* RooftopLevel: the level of the rooftop of the building in meters (default 20 meters).

8.2. User Documentation 35

ns-3 Model Library, Release ns-3.25

* Los2NlosThr: the value of distance of the switching point between line-of-sigth and non-line-of-sight prop-
agation model in meters (default 200 meters).

* ITUl411DistanceThr: the value of distance of the switching point between short range (ITU 1211) com-
munications and long range (Okumura Hata) in meters (default 200 meters).

e MinDistance: the minimum distance in meters between two nodes for evaluating the pathloss (considered
neglictible before this threshold) (default 0.5 meters).

* Environment: the environment scenario among Urban, SubUrban and OpenAreas (default Urban).
e CitySize: the dimension of the city among Small, Medium, Large (default Large).

In order to use the hybrid mode, the class to be used is the HybridBuildingMobilityLossModel, which allows
the selection of the proper pathloss model according to the pathloss logic presented in the design chapter. However,
this solution has the problem that the pathloss model switching points might present discontinuities due to the different
characteristics of the model. This implies that according to the specific scenario, the threshold used for switching have
to be properly tuned. The simple OhBuildingMobilityLossModel overcome this problem by using only the
Okumura Hata model and the wall penetration losses.

8.3 Testing Documentation

8.3.1 Overview
To test and validate the ns-3 Building Pathloss module, some test suites is provided which are integrated with the ns-3
test framework. To run them, you need to have configured the build of the simulator in this way:

S ./waf configure —--enable-tests —-enable-modules=buildings
S ./test.py

The above will run not only the test suites belonging to the buildings module, but also those belonging to all the other
ns-3 modules on which the buildings module depends. See the ns-3 manual for generic information on the testing
framework.

You can get a more detailed report in HTML format in this way:

$./test.py -w results.html

After the above command has run, you can view the detailed result for each test by opening the file results.html
with a web browser.

You can run each test suite separately using this command:

S ./test.py -s test-suite-name

For more details about test . py and the ns-3 testing framework, please refer to the ns-3 manual.

8.3.2 Description of the test suites
BuildingsHelper test

The test suite buildings—helper checks that the method BuildingsHelper: :MakeAllInstancesConsistent
() works properly, i.e., that the BuildingsHelper is successful in locating if nodes are outdoor or indoor, and if indoor

that they are located in the correct building, room and floor. Several test cases are provided with different buildings
(having different size, position, rooms and floors) and different node positions. The test passes if each every node is
located correctly.

36 Chapter 8. Buildings Module

ns-3 Model Library, Release ns-3.25

BuildingPositionAllocator test

The test suite building-position-allocator feature two test cases that check that respectively Random-
RoomPositionAllocator and SameRoomPositionAllocator work properly. Each test cases involves a single 2x3x2
room building (total 12 rooms) at known coordinates and respectively 24 and 48 nodes. Both tests check that the
number of nodes allocated in each room is the expected one and that the position of the nodes is also correct.

Buildings Pathloss tests

The test suite buildings—-pathloss—-model provides different unit tests that compare the expected results of
the buildings pathloss module in specific scenarios with pre calculated values obtained offline with an Octave script
(test/reference/buildings-pathloss.m). The tests are considered passed if the two values are equal up to a tolerance of
0.1, which is deemed appropriate for the typical usage of pathloss values (which are in dB).

In the following we detailed the scenarios considered, their selection has been done for covering the wide set of
possible pathloss logic combinations. The pathloss logic results therefore implicitly tested.

Test #1 Okumura Hata

In this test we test the standard Okumura Hata model; therefore both eNB and UE are placed outside at a distance
of 2000 m. The frequency used is the E-UTRA band #5, which correspond to 869 MHz (see table 5.5-1 of 36.101).
The test includes also the validation of the areas extensions (i.e., urban, suburban and open-areas) and of the city size
(small, medium and large).

Test #2 COST231 Model

This test is aimed at validating the COST231 model. The test is similar to the Okumura Hata one, except that the
frequency used is the EUTRA band #1 (2140 MHz) and that the test can be performed only for large and small cities
in urban scenarios due to model limitations.

Test #3 2.6 GHz model

This test validates the 2.6 GHz Kun model. The test is similar to Okumura Hata one except that the frequency is the
EUTRA band #7 (2620 MHz) and the test can be performed only in urban scenario.

Test #4 ITU1411 LoS model

This test is aimed at validating the ITU1411 model in case of line of sight within street canyons transmissions. In this
case the UE is placed at 100 meters far from the eNB, since the threshold for switching between LoS and NLoS is left
to default one (i.e., 200 m.).

Test #5 ITU1411 NLoS model

This test is aimed at validating the ITU1411 model in case of non line of sight over the rooftop transmissions. In this
case the UE is placed at 900 meters far from the eNB, in order to be above the threshold for switching between LoS
and NLoS is left to default one (i.e., 200 m.).

8.3. Testing Documentation 37

ns-3 Model Library, Release ns-3.25

Test #6 ITUP1238 model

This test is aimed at validating the ITUP1238 model in case of indoor transmissions. In this case both the UE and the
eNB are placed in a residential building with walls made of concrete with windows. Ue is placed at the second floor
and distances 30 meters far from the eNB, which is placed at the first floor.

Test #7 Outdoor -> Indoor with Okumura Hata model

This test validates the outdoor to indoor transmissions for large distances. In this case the UE is placed in a residential
building with wall made of concrete with windows and distances 2000 meters from the outdoor eNB.

Test #8 Outdoor -> Indoor with ITU1411 model

This test validates the outdoor to indoor transmissions for short distances. In this case the UE is placed in a residential
building with walls made of concrete with windows and distances 100 meters from the outdoor eNB.

Test #9 Indoor -> Outdoor with ITU1411 model

This test validates the outdoor to indoor transmissions for very short distances. In this case the eNB is placed in the
second floor of a residential building with walls made of concrete with windows and distances 100 meters from the
outdoor UE (i.e., LoS communication). Therefore the height gain has to be included in the pathloss evaluation.

Test #10 Indoor -> Outdoor with ITU1411 model

This test validates the outdoor to indoor transmissions for short distances. In this case the eNB is placed in the second
floor of a residential building with walls made of concrete with windows and distances 500 meters from the outdoor
UE (i.e., NLoS communication). Therefore the height gain has to be included in the pathloss evaluation.

Buildings Shadowing Test

The test suite buildings-shadowing-test is a unit test intended to verify the statistical distribution of the
shadowing model implemented by BuildingsPathlossModel. The shadowing is modeled according to a nor-
mal distribution with mean ¢ = 0 and variable standard deviation o, according to models commonly used in lit-
erature. Three test cases are provided, which cover the cases of indoor, outdoor and indoor-to-outdoor commu-
nications. Each test case generates 1000 different samples of shadowing for different pairs of MobilityModel in-
stances in a given scenario. Shadowing values are obtained by subtracting from the total loss value returned by
HybridBuildingsPathlossModel the path loss component which is constant and pre-determined for each test
case. The test verifies that the sample mean and sample variance of the shadowing values fall within the 99% confi-
dence interval of the sample mean and sample variance. The test also verifies that the shadowing values returned at
successive times for the same pair of MobilityModel instances is constant.

8.4 References

38 Chapter 8. Buildings Module

CHAPTER
NINE

CLICK MODULAR ROUTER INTEGRATION

Click is a software architecture for building configurable routers. By using different combinations of packet processing
units called elements, a Click router can be made to perform a specific kind of functionality. This flexibility provides
a good platform for testing and experimenting with different protocols.

9.1 Model Description

The source code for the Click model lives in the directory src/click.

9.1.1 Design

ns-3’s design is well suited for an integration with Click due to the following reasons:

 Packets in ns-3 are serialised/deserialised as they move up/down the stack. This allows ns-3 packets to be passed
to and from Click as they are.

* This also means that any kind of ns-3 traffic generator and transport should work easily on top of Click.

* By striving to implement click as an Ipv4RoutingProtocol instance, we can avoid significant changes to the LL
and MAC layer of the ns-3 code.

The design goal was to make the ns-3-click public API simple enough such that the user needs to merely add an
Ipv4ClickRouting instance to the node, and inform each Click node of the Click configuration file (.click file) that it is
to use.

This model implements the interface to the Click Modular Router and provides the Ipv4ClickRouting class to allow a
node to use Click for external routing. Unlike normal Ipv4RoutingProtocol sub types, Ipv4ClickRouting doesn’t use a
Routelnput() method, but instead, receives a packet on the appropriate interface and processes it accordingly. Note that
you need to have a routing table type element in your Click graph to use Click for external routing. This is needed by
the RouteOutput() function inherited from Ipv4RoutingProtocol. Furthermore, a Click based node uses a different kind
of L3 in the form of Ipv4L3ClickProtocol, which is a trimmed down version of Ipv4L3Protocol. Ipv4L3ClickProtocol
passes on packets passing through the stack to Ipv4ClickRouting for processing.

Developing a Simulator API to allow ns-3 to interact with Click

Much of the API is already well defined, which allows Click to probe for information from the simulator (like a Node’s
ID, an Interface ID and so forth). By retaining most of the methods, it should be possible to write new implementations
specific to ns-3 for the same functionality.

Hence, for the Click integration with ns-3, a class named Ipv4ClickRouting will handle the interaction with Click. The
code for the same can be found in src/click/model/ipv4-click-routing. {cc, h}.

39

ns-3 Model Library, Release ns-3.25

Packet hand off between ns-3 and Click

There are four kinds of packet hand-offs that can occur between ns-3 and Click.
* L4toL3
* L3toL4
e L3t0L2
e [2t0L3

To overcome this, we implement Ipv4L3ClickProtocol, a stripped down version of Ipv4L3Protocol.
Ipv4L3ClickProtocol passes packets to and from Ipv4ClickRouting appropriately to perform routing.

9.1.2 Scope and Limitations

* Inits current state, the NS-3 Click Integration is limited to use only with L3, leaving NS-3 to handle L2. We are
currently working on adding Click MAC support as well. See the usage section to make sure that you design
your Click graphs accordingly.

* Furthermore, ns-3-click will work only with userlevel elements. The complete list of elements are available at
http://read.cs.ucla.edu/click/elements. Elements that have ‘all’, ‘userlevel’ or ‘ns’ mentioned beside them may
be used.

¢ As of now, the ns-3 interface to Click is Ipv4 only. We will be adding Ipv6 support in the future.

9.1.3 References
» Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The click modular router.
ACM Transactions on Computer Systems 18(3), August 2000, pages 263-297.

 Lalith Suresh P., and Ruben Merz. Ns-3-click: click modular router integration for ns-3. In Proc. of 3rd
International ICST Workshop on NS-3 (WNS3), Barcelona, Spain. March, 2011.

* Michael Neufeld, Ashish Jain, and Dirk Grunwald. Nsclick: bridging network simulation and deployment.
MSWiM ‘02: Proceedings of the Sth ACM international workshop on Modeling analysis and simulation of
wireless and mobile systems, 2002, Atlanta, Georgia, USA. http://doi.acm.org/10.1145/570758.570772

9.2 Usage

9.2.1 Building Click

The first step is to clone Click from the github repository and build it:

$ git clone https://github.com/kohler/click

$ cd click/

$./configure —--disable-linuxmodule —--enable-nsclick —-—-enable-wifi
S make

The —enable-wifi flag may be skipped if you don’t intend on using Click with Wifi. * Note: You don’t need to do a
‘make install’.

Once Click has been built successfully, change into the ns-3 directory and configure ns-3 with Click Integration
support:

40 Chapter 9. Click Modular Router Integration

http://read.cs.ucla.edu/click/elements
http://doi.acm.org/10.1145/570758.570772

ns-3 Model Library, Release ns-3.25

S ./waf configure —--enable-examples —--enable-tests —--with-nsclick=/path/to/click/source

Hint: If you have click installed one directory above ns-3 (such as in the ns-3-allinone directory), and the name of
the directory is ‘click’ (or a symbolic link to the directory is named ‘click’), then the —with-nsclick specifier is not
necessary; the ns-3 build system will successfully find the directory.

If it says ‘enabled’ beside ‘NS-3 Click Integration Support’, then you’re good to go. Note: If running modular ns-3,
the minimum set of modules required to run all ns-3-click examples is wifi, csma and config-store.

Next, try running one of the examples:

S ./waf —-run nsclick-simple-lan

You may then view the resulting .pcap traces, which are named nsclick-simple-lan-0-0.pcap and nsclick-simple-lan-0-
1.pcap.

9.2.2 Click Graph Instructions

The following should be kept in mind when making your Click graph:
* Only userlevel elements can be used.
* You will need to replace FromDevice and ToDevice elements with FromSimDevice and ToSimDevice elements.
* Packets to the kernel are sent up using ToSimDevice(tap0,IP).

» For any node, the device which sends/receives packets to/from the kernel, is named ‘tap0’. The remaining
interfaces should be named ethO, ethl and so forth (even if you’re using wifi). Please note that the device
numbering should begin from 0. In future, this will be made flexible so that users can name devices in their
Click file as they wish.

* A routing table element is a mandatory. The OUTports of the routing table element should correspond to the
interface number of the device through which the packet will ultimately be sent out. Violating this rule will lead
to really weird packet traces. This routing table element’s name should then be passed to the Ipv4ClickRouting
protocol object as a simulation parameter. See the Click examples for details.

* The current implementation leaves Click with mainly L3 functionality, with ns-3 handling L2. We will soon
begin working to support the use of MAC protocols on Click as well. This means that as of now, Click’s Wifi
specific elements cannot be used with ns-3.

9.2.3 Debugging Packet Flows from Click

From any point within a Click graph, you may use the Print (http://read.cs.ucla.edu/click/elements/print) element and
its variants for pretty printing of packet contents. Furthermore, you may generate pcap traces of packets flowing
through a Click graph by using the ToDump (http://read.cs.ucla.edu/click/elements/todump) element as well. For
instance:

myarpquerier
—> Print (fromarpquery, 64)
—> ToDump (out_arpquery, PER_NODE 1)
-> ethout;

and ...will print the contents of packets that flow out of the ArpQuerier, then generate a pcap trace file which will have
a suffix ‘out_arpquery’, for each node using the Click file, before pushing packets onto ‘ethout’.

9.2. Usage 41

http://read.cs.ucla.edu/click/elements/print
http://read.cs.ucla.edu/click/elements/todump

ns-3 Model Library, Release ns-3.25

9.2.4 Helper

To have a node run Click, the easiest way would be to use the ClickInternetStackHelper class in your simulation script.
For instance:

ClickInternetStackHelper click;

click.SetClickFile (myNodeContainer, "nsclick-simple-lan.click");
click.SetRoutingTableElement (myNodeContainer, "u/rt");
click.Install (myNodeContainer);

The example scripts inside src/click/examples/ demonstrate the use of Click
based nodes in different scenarios. The helper source can be found inside
src/click/helper/click-internet-stack-helper. {h,cc}

9.2.5 Examples

The following examples have been written, which can be found in src/click/examples/:

¢ nsclick-simple-lan.cc and nsclick-raw-wlan.cc: A Click based node communicating with a normal ns-3 node
without Click, using Csma and Wifi respectively. It also demonstrates the use of TCP on top of Click, something
which the original nsclick implementation for NS-2 couldn’t achieve.

* nsclick-udp-client-server-csma.cc and nsclick-udp-client-server-wifi.cc: A 3 node LAN (Csma and Wifi respec-
tively) wherein 2 Click based nodes run a UDP client, that sends packets to a third Click based node running a
UDP server.

¢ nsclick-routing.cc: One Click based node communicates to another via a third node that acts as an IP router
(using the IP router Click configuration). This demonstrates routing using Click.

Scripts are available within <click-dir>/conf/ that allow you to generate Click files for some common sce-
narios. The IP Router used in nsclick-routing.cc was generated from the make-ip-conf.pl file and slightly
adapted to work with ns-3-click.

9.3 Validation

This model has been tested as follows:

e Unit tests have been written to verify the internals of Ipv4ClickRouting. This can be found in
src/click/ipvéd-click-routing-test.cc. These tests verify whether the methods inside
Ipv4ClickRouting which deal with Device name to ID, IP Address from device name and Mac Address from
device name bindings work as expected.

e The examples have been used to test Click with actual simulation scenarios. These can be found in
src/click/examples/. These tests cover the following: the use of different kinds of transports on top
of Click, TCP/UDP, whether Click nodes can communicate with non-Click based nodes, whether Click nodes
can communicate with each other, using Click to route packets using static routing.

* Click has been tested with Csma, Wifi and Point-to-Point devices. Usage instructions are available in the pre-
ceding section.

42 Chapter 9. Click Modular Router Integration

CHAPTER
TEN

CSMA NETDEVICE

This is the introduction to CSMA NetDevice chapter, to complement the Csma model doxygen.

10.1 Overview of the CSMA model

The ns-3 CSMA device models a simple bus network in the spirit of Ethernet. Although it does not model any real
physical network you could ever build or buy, it does provide some very useful functionality.

Typically when one thinks of a bus network Ethernet or IEEE 802.3 comes to mind. Ethernet uses CSMA/CD (Car-
rier Sense Multiple Access with Collision Detection with exponentially increasing backoff to contend for the shared
transmission medium. The ns-3 CSMA device models only a portion of this process, using the nature of the globally
available channel to provide instantaneous (faster than light) carrier sense and priority-based collision “avoidance.”
Collisions in the sense of Ethernet never happen and so the ns-3 CSMA device does not model collision detection, nor
will any transmission in progress be “jammed.”

10.1.1 CSMA Layer Model

There are a number of conventions in use for describing layered communications architectures in the literature and in
textbooks. The most common layering model is the ISO seven layer reference model. In this view the CsmaNetDevice
and CsmaChannel pair occupies the lowest two layers — at the physical (layer one), and data link (layer two) positions.
Another important reference model is that specified by RFC 1122, “Requirements for Internet Hosts — Communication
Layers.” In this view the CsmaNetDevice and CsmaChannel pair occupies the lowest layer — the link layer. There is
also a seemingly endless litany of alternative descriptions found in textbooks and in the literature. We adopt the naming
conventions used in the IEEE 802 standards which speak of LLC, MAC, MII and PHY layering. These acronyms are
defined as:

* LLC: Logical Link Control;

¢ MAC: Media Access Control;

* MII: Media Independent Interface;
* PHY: Physical Layer.

In this case the LLC and MAC are sublayers of the OSI data link layer and the MII and PHY are sublayers of the OSI
physical layer.

The “top” of the CSMA device defines the transition from the network layer to the data link layer. This transition is
performed by higher layers by calling either CsmaNetDevice::Send or CsmaNetDevice::SendFrom.

In contrast to the IEEE 802.3 standards, there is no precisely specified PHY in the CSMA model in the sense of wire
types, signals or pinouts. The “bottom” interface of the CsmaNetDevice can be thought of as as a kind of Media
Independent Interface (MII) as seen in the “Fast Ethernet” (IEEE 802.3u) specifications. This MII interface fits into a

43

ns-3 Model Library, Release ns-3.25

corresponding media independent interface on the CsmaChannel. You will not find the equivalent of a 10BASE-T or
a 1000BASE-LX PHY.

The CsmaNetDevice calls the CsmaChannel through a media independent interface. There is a method defined to tell
the channel when to start “wiggling the wires” using the method CsmaChannel:: TransmitStart, and a method to tell
the channel when the transmission process is done and the channel should begin propagating the last bit across the
“wire”: CsmaChannel::TransmitEnd.

When the TransmitEnd method is executed, the channel will model a single uniform signal propagation delay in the
medium and deliver copes of the packet to each of the devices attached to the packet via the CsmaNetDevice::Receive
method.

There is a “pin” in the device media independent interface corresponding to “COL” (collision). The state of the channel
may be sensed by calling CsmaChannel::GetState. Each device will look at this “pin” before starting a send and will
perform appropriate backoff operations if required.

Properly received packets are forwarded up to higher levels from the CsmaNetDevice via a callback mechanism.
The callback function is initialized by the higher layer (when the net device is attached) using CsmaNetDe-
vice::SetReceiveCallback and is invoked upon “proper” reception of a packet by the net device in order to forward
the packet up the protocol stack.

10.2 CSMA Channel Model

The class CsmaChannel models the actual transmission medium. There is no fixed limit for the number of devices
connected to the channel. The CsmaChannel models a data rate and a speed-of-light delay which can be accessed via
the attributes “DataRate” and “Delay” respectively. The data rate provided to the channel is used to set the data rates
used by the transmitter sections of the CSMA devices connected to the channel. There is no way to independently set
data rates in the devices. Since the data rate is only used to calculate a delay time, there is no limitation (other than
by the data type holding the value) on the speed at which CSMA channels and devices can operate; and no restriction
based on any kind of PHY characteristics.

The CsmaChannel has three states, IDLE, TRANSMITTING and PROPAGATING. These three states are “seen” in-
stantaneously by all devices on the channel. By this we mean that if one device begins or ends a simulated transmission,
all devices on the channel are immediately aware of the change in state. There is no time during which one device may
see an IDLE channel while another device physically further away in the collision domain may have begun transmit-
ting with the associated signals not propagated down the channel to other devices. Thus there is no need for collision
detection in the CsmaChannel model and it is not implemented in any way.

We do, as the name indicates, have a Carrier Sense aspect to the model. Since the simulator is single threaded, access
to the common channel will be serialized by the simulator. This provides a deterministic mechanism for contending
for the channel. The channel is allocated (transitioned from state IDLE to state TRANSMITTING) on a first-come
first-served basis. The channel always goes through a three state process:

IDLE -> TRANSMITTING -> PROPAGATING —-> IDLE

The TRANSMITTING state models the time during which the source net device is actually wiggling the signals on the
wire. The PROPAGATING state models the time after the last bit was sent, when the signal is propagating down the
wire to the “far end.”

The transition to the TRANSMITTING state is driven by a call to CsmaChannel::TransmitStart which is called by
the net device that transmits the packet. It is the responsibility of that device to end the transmission with a call to
CsmaChannel::TransmitEnd at the appropriate simulation time that reflects the time elapsed to put all of the packet
bits on the wire. When TransmitEnd is called, the channel schedules an event corresponding to a single speed-of-
light delay. This delay applies to all net devices on the channel identically. You can think of a symmetrical hub in
which the packet bits propagate to a central location and then back out equal length cables to the other devices on the
channel. The single “speed of light” delay then corresponds to the time it takes for: 1) a signal to propagate from one

44 Chapter 10. CSMA NetDevice

ns-3 Model Library, Release ns-3.25

CsmaNetDevice through its cable to the hub; plus 2) the time it takes for the hub to forward the packet out a port; plus
3) the time it takes for the signal in question to propagate to the destination net device.

The CsmaChannel models a broadcast medium so the packet is delivered to all of the devices on the channel (including
the source) at the end of the propagation time. It is the responsibility of the sending device to determine whether or
not it receives a packet broadcast over the channel.

The CsmaChannel provides following Attributes:
» DataRate: The bitrate for packet transmission on connected devices;

¢ Delay: The speed of light transmission delay for the channel.

10.3 CSMA Net Device Model

The CSMA network device appears somewhat like an Ethernet device. The CsmaNetDevice provides following At-
tributes:

* Address: The Mac48Address of the device;

» SendEnable: Enable packet transmission if true;

* ReceiveEnable: Enable packet reception if true;

* EncapsulationMode: Type of link layer encapsulation to use;
¢ RxErrorModel: The receive error model;

¢ TxQueue: The transmit queue used by the device;

¢ InterframeGap: The optional time to wait between “frames”;
* Rx: A trace source for received packets;

* Drop: A trace source for dropped packets.

The CsmaNetDevice supports the assignment of a “receive error model.” This is an ErrorModel object that is used to
simulate data corruption on the link.

Packets sent over the CsmaNetDevice are always routed through the transmit queue to provide a trace hook for packets
sent out over the network. This transmit queue can be set (via attribute) to model different queuing strategies.

Also configurable by attribute is the encapsulation method used by the device. Every packet gets an EthernetHeader
that includes the destination and source MAC addresses, and a length/type field. Every packet also gets an Ethernet-
Trailer which includes the FCS. Data in the packet may be encapsulated in different ways.

By default, or by setting the “EncapsulationMode” attribute to “Dix”, the encapsulation is according to the DEC,
Intel, Xerox standard. This is sometimes called Ethernetll framing and is the familiar destination MAC, source MAC,
EtherType, Data, CRC format.

If the “EncapsulationMode” attribute is set to “Llc”, the encapsulation is by LLC SNAP. In this case, a SNAP header
is added that contains the EtherType (IP or ARP).

The other implemented encapsulation modes are IP_ARP (set “EncapsulationMode” to “IpArp”) in which the length
type of the Ethernet header receives the protocol number of the packet; or ETHERNET_V1 (set “EncapsulationMode”
to “EthernetV1”) in which the length type of the Ethernet header receives the length of the packet. A “Raw” encapsu-
lation mode is defined but not implemented — use of the RAW mode results in an assertion.

Note that all net devices on a channel must be set to the same encapsulation mode for correct results. The encapsulation
mode is not sensed at the receiver.

The CsmaNetDevice implements a random exponential backoff algorithm that is executed if the channel is determined
to be busy (TRANSMITTING or PPROPAGATING) when the device wants to start propagating. This results in a

10.3. CSMA Net Device Model 45

ns-3 Model Library, Release ns-3.25

random delay of up to pow (2, retries) - 1 microseconds before a retry is attempted. The default maximum number of
retries is 1000.

10.4 Using the CsmaNetDevice

The CSMA net devices and channels are typically created and configured using the associated CsmaHe lper object.
The various ns-3 device helpers generally work in a similar way, and their use is seen in many of our example programs.

The conceptual model of interest is that of a bare computer “husk” into which you plug net devices. The bare computers
are created using a NodeContainer helper. You just ask this helper to create as many computers (we call them
Nodes) as you need on your network:

NodeContainer csmaNodes;
csmaNodes.Create (nCsmaNodes) ;

Once you have your nodes, you need to instantiate a CsmaHe lper and set any attributes you may want to change.:

CsmaHelper csma;
csma.SetChannelAttribute ("DataRate", StringValue ("100Mbps"));
csma.SetChannelAttribute ("Delay", TimeValue (NanoSeconds (6560)));

csma.SetDeviceAttribute ("EncapsulationMode", StringValue ("Dix"));
csma.SetDeviceAttribute ("FrameSize", UintegerValue (2000));

Once the attributes are set, all that remains is to create the devices and install them on the required nodes, and to
connect the devices together using a CSMA channel. When we create the net devices, we add them to a container to
allow you to use them in the future. This all takes just one line of code.:

NetDeviceContainer csmaDevices = csma.Install (csmaNodes);

We recommend thinking carefully about changing these Attributes, since it can result in behavior that surprises users.
We allow this because we believe flexibility is important. As an example of a possibly surprising effect of changing
Attributes, consider the following:

The Mtu Attribute indicates the Maximum Transmission Unit to the device. This is the size of the largest Protocol
Data Unit (PDU) that the device can send. This Attribute defaults to 1500 bytes and corresponds to a number found
in RFC 894, “A Standard for the Transmission of IP Datagrams over Ethernet Networks.” The number is actually
derived from the maximum packet size for 10Base5 (full-spec Ethernet) networks — 1518 bytes. If you subtract DIX
encapsulation overhead for Ethernet packets (18 bytes) you will end up with a maximum possible data size (MTU)
of 1500 bytes. One can also find that the MTU for IEEE 802.3 networks is 1492 bytes. This is because LLC/SNAP
encapsulation adds an extra eight bytes of overhead to the packet. In both cases, the underlying network hardware is
limited to 1518 bytes, but the MTU is different because the encapsulation is different.

If one leaves the Mtu Attribute at 1500 bytes and changes the encapsulation mode Attribute to Llc, the result will be a
network that encapsulates 1500 byte PDUs with LLC/SNAP framing resulting in packets of 1526 bytes. This would
be illegal in many networks, but we allow you do do this. This results in a simulation that quite subtly does not reflect
what you might be expecting since a real device would balk at sending a 1526 byte packet.

There also exist jumbo frames (1500 < MTU <= 9000 bytes) and super-jumbo (MTU > 9000 bytes) frames that
are not officially sanctioned by IEEE but are available in some high-speed (Gigabit) networks and NICs. In the
CSMA model, one could leave the encapsulation mode set to Dix, and set the Mtu to 64000 bytes — even though an
associated CsmaChannel DataRate was left at 10 megabits per second (certainly not Gigabit Ethernet). This would
essentially model an Ethernet switch made out of vampire-tapped 1980s-style 10Base5 networks that support super-
jumbo datagrams, which is certainly not something that was ever made, nor is likely to ever be made; however it is
quite easy for you to configure.

46 Chapter 10. CSMA NetDevice

ns-3 Model Library, Release ns-3.25

Be careful about assumptions regarding what CSMA is actually modelling and how configuration (Attributes) may
allow you to swerve considerably away from reality.

10.5 CSMA Tracing

Like all ns-3 devices, the CSMA Model provides a number of trace sources. These trace sources can be hooked using
your own custom trace code, or you can use our helper functions to arrange for tracing to be enabled on devices you
specify.

10.5.1 Upper-Level (MAC) Hooks

From the point of view of tracing in the net device, there are several interesting points to insert trace hooks. A con-
vention inherited from other simulators is that packets destined for transmission onto attached networks pass through
a single “transmit queue” in the net device. We provide trace hooks at this point in packet flow, which corresponds
(abstractly) only to a transition from the network to data link layer, and call them collectively the device MAC hooks.

When a packet is sent to the CSMA net device for transmission it always passes through the transmit queue. The
transmit queue in the CsmaNetDevice inherits from Queue, and therefore inherits three trace sources:

* An Enqueue operation source (see Queue::m_traceEnqueue);
* A Dequeue operation source (see Queue::m_traceDequeue);
* A Drop operation source (see Queue::m_traceDrop).

The upper-level (MAC) trace hooks for the CsmaNetDevice are, in fact, exactly these three trace sources on the single
transmit queue of the device.

The m_traceEnqueue event is triggered when a packet is placed on the transmit queue. This happens at the time that
CsmaNetDevice::Send or CsmaNetDevice::SendFrom is called by a higher layer to queue a packet for transmission.

The m_traceDequeue event is triggered when a packet is removed from the transmit queue. Dequeues from the trans-
mit queue can happen in three situations: 1) If the underlying channel is idle when the CsmaNetDevice::Send or
CsmaNetDevice::SendFrom is called, a packet is dequeued from the transmit queue and immediately transmitted; 2)
If the underlying channel is idle, a packet may be dequeued and immediately transmitted in an internal TransmitCom-
pleteEvent that functions much like a transmit complete interrupt service routine; or 3) from the random exponential
backoff handler if a timeout is detected.

Case (3) implies that a packet is dequeued from the transmit queue if it is unable to be transmitted according to the
backoff rules. It is important to understand that this will appear as a Dequeued packet and it is easy to incorrectly
assume that the packet was transmitted since it passed through the transmit queue. In fact, a packet is actually dropped
by the net device in this case. The reason for this behavior is due to the definition of the Queue Drop event. The
m_traceDrop event is, by definition, fired when a packet cannot be enqueued on the transmit queue because it is full.
This event only fires if the queue is full and we do not overload this event to indicate that the CsmaChannel is “full.”

10.5.2 Lower-Level (PHY) Hooks

Similar to the upper level trace hooks, there are trace hooks available at the lower levels of the net device. We call
these the PHY hooks. These events fire from the device methods that talk directly to the CsmaChannel.

The trace source m_dropTrace is called to indicate a packet that is dropped by the device. This happens in two cases:
First, if the receive side of the net device is not enabled (see CsmaNetDevice::m_receiveEnable and the associated
attribute “ReceiveEnable”).

The m_dropTrace is also used to indicate that a packet was discarded as corrupt if a receive error model is used (see
CsmaNetDevice::m_receiveErrorModel and the associated attribute “ReceiveErrorModel”).

10.5. CSMA Tracing 47

ns-3 Model Library, Release ns-3.25

The other low-level trace source fires on reception of an accepted packet (see CsmaNetDevice::m_rxTrace). A packet
is accepted if it is destined for the broadcast address, a multicast address, or to the MAC address assigned to the net
device.

10.6 Summary

The ns3 CSMA model is a simplistic model of an Ethernet-like network. It supports a Carrier-Sense function and
allows for Multiple Access to a shared medium. It is not physical in the sense that the state of the medium is instan-
taneously shared among all devices. This means that there is no collision detection required in this model and none
is implemented. There will never be a “jam” of a packet already on the medium. Access to the shared channel is on
a first-come first-served basis as determined by the simulator scheduler. If the channel is determined to be busy by
looking at the global state, a random exponential backoff is performed and a retry is attempted.

Ns-3 Attributes provide a mechanism for setting various parameters in the device and channel such as addresses,
encapsulation modes and error model selection. Trace hooks are provided in the usual manner with a set of upper level
hooks corresponding to a transmit queue and used in ASCII tracing; and also a set of lower level hooks used in pcap
tracing.

Although the ns-3 CsmaChannel and CsmaNetDevice does not model any kind of network you could build or buy, it
does provide us with some useful functionality. You should, however, understand that it is explicitly not Ethernet or
any flavor of IEEE 802.3 but an interesting subset.

48 Chapter 10. CSMA NetDevice

CHAPTER
ELEVEN

DATA COLLECTION

This chapter describes the ns-3 Data Collection Framework (DCF), which provides capabilities to obtain data gener-
ated by models in the simulator, to perform on-line reduction and data processing, and to marshal raw or transformed
data into various output formats.

The framework presently supports standalone ns-3 runs that don’t rely on any external program execution control. The
objects provided by the DCF may be hooked to ns-3 trace sources to enable data processing.

The source code for the classes lives in the directory src/stats.

This chapter is organized as follows. First, an overview of the architecture is presented. Next, the helpers for these
classes are presented; this initial treatment should allow basic use of the data collection framework for many use cases.
Users who wish to produce output outside of the scope of the current helpers, or who wish to create their own data
collection objects, should read the remainder of the chapter, which goes into detail about all of the basic DCF object
types and provides low-level coding examples.

11.1 Design

The DCF consists of three basic classes:

* Probe is a mechanism to instrument and control the output of simulation data that is used to monitor interesting
events. It produces output in the form of one or more ns-3 trace sources. Probe objects are hooked up to one or
more trace sinks (called Collectors), which process samples on-line and prepare them for output.

* Collector consumes the data generated by one or more Probe objects. It performs transformations on the data,
such as normalization, reduction, and the computation of basic statistics. Collector objects do not produce data
that is directly output by the ns-3 run; instead, they output data downstream to another type of object, called
Aggregator, which performs that function. Typically, Collectors output their data in the form of trace sources as
well, allowing collectors to be chained in series.

» Aggregator is the end point of the data collected by a network of Probes and Collectors. The main responsibility
of the Aggregator is to marshal data and their corresponding metadata, into different output formats such as
plain text files, spreadsheet files, or databases.

All three of these classes provide the capability to dynamically turn themselves on or off throughout a simulation.

Any standalone ns-3 simulation run that uses the DCF will typically create at least one instance of each of the three
classes above.

The overall flow of data processing is depicted in Data Collection Framework overview. On the left side, a running
ns-3 simulation is depicted. In the course of running the simulation, data is made available by models through trace
sources, or via other means. The diagram depicts that probes can be connected to these trace sources to receive data
asynchronously, or probes can poll for data. Data is then passed to a collector object that transforms the data. Finally,
an aggregator can be connected to the outputs of the collector, to generate plots, files, or databases.

49

ns-3 Model Library, Release ns-3.25

(asynchronous)
trace sources

> ’
----- >
Probe Collector Aggregator> -p
\
\

or
<4—
\
Get raw Transform data Marshal data >
(synchronous) ;¢4 into output »_ files
polling formats 4
databases
Figure 11.1: Data Collection Framework overview
(asynchronous)
trace s

o S hrebe >,
—

4—
h Get raw
(syr.1c ronous) data
polling

ources.
""" > Probe Collector
>

“A

Transform data :l
s

Aggregator>» - - »

Marshal data
into output
formats

Figure 11.2: Data Collection Framework aggregation

50

Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.25

A variation on the above figure is provided in Data Collection Framework aggregation. This second figure illustrates
that the DCF objects may be chained together in a manner that downstream objects take inputs from multiple upstream
objects. The figure conceptually shows that multiple probes may generate output that is fed into a single collector; as
an example, a collector that outputs a ratio of two counters would typically acquire each counter data from separate
probes. Multiple collectors can also feed into a single aggregator, which (as its name implies) may collect a number
of data streams for inclusion into a single plot, file, or database.

11.2 Data Collection Helpers

The full flexibility of the data collection framework is provided by the interconnection of probes, collectors, and
aggregators. Performing all of these interconnections leads to many configuration statements in user programs. For
ease of use, some of the most common operations can be combined and encapsulated in helper functions. In addition,
some statements involving ns-3 trace sources do not have Python bindings, due to limitations in the bindings.

11.2.1 Data Collection Helpers Overview

In this section, we provide an overview of some helper classes that have been created to ease the configuration of the
data collection framework for some common use cases. The helpers allow users to form common operations with
only a few statements in their C++ or Python programs. But, this ease of use comes at the cost of significantly less
flexibility than low-level configuration can provide, and the need to explicitly code support for new Probe types into
the helpers (to work around an issue described below).

The emphasis on the current helpers is to marshal data out of ns-3 trace sources into gnuplot plots or text files, without
a high degree of output customization or statistical processing (initially). Also, the use is constrained to the available
probe types in ns-3. Later sections of this documentation will go into more detail about creating new Probe types, as
well as details about hooking together Probes, Collectors, and Aggregators in custom arrangements.

To date, two Data Collection helpers have been implemented:
* GnuplotHelper
* FileHelper

11.2.2 GnuplotHelper

The GnuplotHelper is a helper class for producing output files used to make gnuplots. The overall goal is to provide
the ability for users to quickly make plots from data exported in ns-3 trace sources. By default, a minimal amount of
data transformation is performed; the objective is to generate plots with as few (default) configuration statements as
possible.

GnuplotHelper Overview

The GnuplotHelper will create 3 different files at the end of the simulation:
* A space separated gnuplot data file
* A gnuplot control file
* A shell script to generate the gnuplot

There are two configuration statements that are needed to produce plots. The first statement configures the plot
(filename, title, legends, and output type, where the output type defaults to PNG if unspecified):

11.2. Data Collection Helpers 51

ns-3 Model Library, Release ns-3.25

void ConfigurePlot (const std::string &outputFileNameWithoutExtension,
const std::string &title,
const std::string &xLegend,
const std::string &yLegend,
const std::string &terminalType = ".png");

The second statement hooks the trace source of interest:

void PlotProbe (const std::string &typeld,
const std::string &path,
const std::string &probeTraceSource,
const std::string &title);

The arguments are as follows:
* typeld: The ns-3 Typeld of the Probe
* path: The path in the ns-3 configuration namespace to one or more trace sources
» probeTraceSource: Which output of the probe (itself a trace source) should be plotted
« title: The title to associate with the dataset(s) (in the gnuplot legend)

A variant on the PlotProbe above is to specify a fifth optional argument that controls where in the plot the key (legend)
is placed.

A fully worked example (from seventh. cc) is shown below:

// Create the gnuplot helper.
GnuplotHelper plotHelper;

// Configure the plot.
// Configure the plot. The first argument is the file name prefix
// for the output files generated. The second, third, and fourth
// arguments are, respectively, the plot title, x—-axis, and y-axis labels
plotHelper.ConfigurePlot ("seventh-packet-byte-count",
"Packet Byte Count vs. Time",
"Time (Seconds)",
"Packet Byte Count",
"png") ;

// Specify the probe type, trace source path (in configuration namespace), and
// probe output trace source ("OutputBytes") to plot. The fourth argument
// specifies the name of the data series label on the plot. The last
// argument formats the plot by specifying where the key should be placed.
plotHelper.PlotProbe (probeType,

tracePath,

"OutputBytes",

"Packet Byte Count",

GnuplotAggregator: :KEY_BELOW) ;

In this example, the probeType and t racePath are as follows (for IPv4):

probeType = "ns3::Ipv4PacketProbe";
tracePath = "/NodeList/*/$ns3::Ipv4L3Protocol/Tx";

The probeType is a key parameter for this helper to work. This Typeld must be registered in the system, and the
signature on the Probe’s trace sink must match that of the trace source it is being hooked to. Probe types are pre-
defined for a number of data types corresponding to ns-3 traced values, and for a few other trace source signatures
such as the ‘Tx’ trace source of ns3: : Ipv4L3Protocol class.

52 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.25

Note that the trace source path specified may contain wildcards. In this case, multiple datasets are plotted on one plot;
one for each matched path.

The main output produced will be three files:

seventh-packet-byte-count.dat
seventh-packet-byte-count.plt
seventh-packet-byte—-count.sh

At this point, users can either hand edit the .plt file for further customizations, or just run it through gnuplot. Running
sh seventh-packet-byte-count.sh simply runs the plot through gnuplot, as shown below.

Paclcet Byte Count vs, Time

Probe Path: /Modelist/*/$ns3:: lpv4L3Protocol /[Tx
6':”:' T T T T T T T T

500 F .

400 |]

300 .

200 ¢ 1

Paclet Byte Count

100 + 1

|:| 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Time (Seconds)

Packet Byte Count-0 —+— Paclet Byte Count-1 ——«—
Figure 11.3: 2-D Gnuplot Created by seventh.cc Example.

It can be seen that the key elements (legend, title, legend placement, xlabel, ylabel, and path for the data) are all placed
on the plot. Since there were two matches to the configuration path provided, the two data series are shown:

¢ Packet Byte Count-0 corresponds to /NodeList/0/$ns3::Ipv4L3Protocol/Tx
* Packet Byte Count-1 corresponds to /NodeList/1/$ns3::Ipv4L3Protocol/Tx

GnuplotHelper ConfigurePlot

The GnuplotHelper’s ConfigurePlot () function can be used to configure plots.

11.2. Data Collection Helpers 53

ns-3 Model Library, Release ns-3.25

It has the following prototype:

void ConfigurePlot (const std::string &outputFileNameWithoutExtension,
const std::string &title,
const std::string &xLegend,
const std::string &yLegend,
const std::string &terminalType = ".png");
It has the following arguments:
Argument Description
outputFileNameWithoutExten- | Name of gnuplot related files to write with no extension.
sion
title Plot title string to use for this plot.
xLegend The legend for the x horizontal axis.
yLegend The legend for the y vertical axis.
terminal Type Terminal type setting string for output. The default terminal type is

. i1

png .

The GnuplotHelper’s ConfigurePlot () function configures plot related parameters for this gnuplot helper so that
it will create a space separated gnuplot data file named outputFileNameWithoutExtension + .dat”, a gnuplot control
file named outputFileNameWithoutExtension + ”.plt”, and a shell script to generate the gnuplot named outputFile-

NameWithoutExtension + ”.sh”.

An example of how to use this function can be seen in the seventh. cc code described above where it was used as

follows:

plotHelper.ConfigurePlot

GnuplotHelper PlotProbe

("seventh-packet-byte-count",

"Packet Byte Count vs. Time",

"Time

n
’

(Seconds)

"Packet Byte Count",
"pngll) ;

The GnuplotHelper’s P1otProbe () function can be used to plot values generated by probes.

It has the following prototype:

void PlotProbe (const std:
const std:
const std:
const std:

It has the following arguments:

:string &typeld,

:string &path,

:string &probeTraceSource,

:string &title,

enum GnuplotAggregator::KeyLocation keyLocation = GnuplotAggregator

Argument Description

typeld The type ID for the probe created by this helper.

path Config path to access the trace source.

probeTraceSource | The probe trace source to access.

title The title to be associated to this dataset

keyLocation The location of the key in the plot. The default location is inside.

: :KEY_INSIDE) ;

The GnuplotHelper’s PlotProbe () function plots a dataset generated by hooking the ns-3 trace source with a probe
created by the helper, and then plotting the values from the probeTraceSource. The dataset will have the provided title,
and will consist of the ‘newValue’ at each timestamp.

54

Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.25

If the config path has more than one match in the system because there is a wildcard, then one dataset for each match
will be plotted. The dataset titles will be suffixed with the matched characters for each of the wildcards in the config
path, separated by spaces. For example, if the proposed dataset title is the string “bytes”, and there are two wildcards
in the path, then dataset titles like “bytes-0 0” or “bytes-12 9” will be possible as labels for the datasets that are plotted.

An example of how to use this function can be seen in the seventh.cc code described above where it was used
(with variable substitution) as follows:

plotHelper.PlotProbe ("ns3::Ipvé4PacketProbe",
"/NodeList/*/%$ns3::Ipv4L3Protocol/Tx",
"OutputBytes",
"Packet Byte Count",
GnuplotAggregator: :KEY_BELOW) ;

Other Examples

Gnuplot Helper Example

A slightly simpler example than the seventh.cc example can be found in
src/stats/examples/gnuplot-helper-example.cc. The following 2-D gnuplot was created us-
ing the example.

Emitter Counts wvs. Time

Probe Path: /Mames/Probe/Output
12D T T T T T

" Emitter Count ———

100

80

60

Emitter Count

40

20

|:| 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 B0 70 80 18] 100

Time (Seconds)

Figure 11.4: 2-D Gnuplot Created by gnuplot-helper-example.cc Example.

11.2. Data Collection Helpers 55

ns-3 Model Library, Release ns-3.25

In this example, there is an Emitter object that increments its counter according to a Poisson process and then emits
the counter’s value as a trace source.

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names: :Add ("/Names/Emitter", emitter);

Note that because there are no wildcards in the path used below, only 1 datastream was drawn in the plot. This single
datastream in the plot is simply labeled “Emitter Count”, with no extra suffixes like one would see if there were
wildcards in the path.

// Create the gnuplot helper.
GnuplotHelper plotHelper;

// Configure the plot.

plotHelper.ConfigurePlot ("gnuplot-helper—-example",
"Emitter Counts vs. Time",
"Time (Seconds)",
"Emitter Count",
"png") ;

// Plot the values generated by the probe. The path that we provide
// helps to disambiguate the source of the trace.
plotHelper.PlotProbe ("ns3::Uinteger32Probe",

"/Names/Emitter/Counter",

"Output",

"Emitter Count",

GnuplotAggregator: :KEY_INSIDE) ;

11.2.3 FileHelper

The FileHelper is a helper class used to put data values into a file. The overall goal is to provide the ability for
users to quickly make formatted text files from data exported in ns-3 trace sources. By default, a minimal amount of
data transformation is performed; the objective is to generate files with as few (default) configuration statements as
possible.

FileHelper Overview

The FileHelper will create 1 or more text files at the end of the simulation.
The FileHelper can create 4 different types of text files:
* Formatted
» Space separated (the default)
* Comma separated
* Tab separated
Formatted files use C-style format strings and the sprintf() function to print their values in the file being written.

The following text file with 2 columns of formatted values named seventh-packet-byte-count-0.txt was
created using more new code that was added to the original ns-3 Tutorial example’s code. Only the first 10 lines of
this file are shown here for brevity.

Time (Seconds) = 1.000e+00 Packet Byte Count = 40
Time (Seconds) = 1.004e+00 Packet Byte Count = 40
Time (Seconds) 1.004e+00 Packet Byte Count 576

56 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.25

Time (Seconds) = 1.009e+00 Packet Byte Count = 576
Time (Seconds) = 1.009e+00 Packet Byte Count = 576
Time (Seconds) = 1.015e+00 Packet Byte Count = 512
Time (Seconds) = 1.017e+00 Packet Byte Count = 576
Time (Seconds) = 1.017e+00 Packet Byte Count = 544
Time (Seconds) = 1.025e+00 Packet Byte Count = 576
Time (Seconds) = 1.025e+00 Packet Byte Count = 544

The following different text file with 2 columns of formatted values named
seventh-packet-byte-count-1.txt was also created using the same new code that was added to the
original ns-3 Tutorial example’s code. Only the first 10 lines of this file are shown here for brevity.

Time (Seconds) = 1.002e+00 Packet Byte Count = 40
Time (Seconds) = 1.007e+00 Packet Byte Count = 40
Time (Seconds) = 1.013e+00 Packet Byte Count = 40
Time (Seconds) = 1.020e+00 Packet Byte Count = 40
Time (Seconds) = 1.028e+00 Packet Byte Count = 40
Time (Seconds) = 1.036e+00 Packet Byte Count = 40
Time (Seconds) = 1.045e+00 Packet Byte Count = 40
Time (Seconds) = 1.053e+00 Packet Byte Count = 40
Time (Seconds) = 1.061e+00 Packet Byte Count = 40
Time (Seconds) = 1.069e+00 Packet Byte Count = 40

The new code that was added to produce the two text files is below. More details about this API will be covered in a
later section.

Note that because there were 2 matches for the wildcard in the path, 2 separate text files were created. The first text
file, which is named “seventh-packet-byte-count-0.txt”, corresponds to the wildcard match with the “*” replaced with
“0”. The second text file, which is named “seventh-packet-byte-count-1.txt”, corresponds to the wildcard match with
the “*” replaced with “1”. Also, note that the function call to WriteProbe () will give an error message if there are
no matches for a path that contains wildcards.

// Create the file helper.
FileHelper fileHelper;

// Configure the file to be written.
fileHelper.ConfigureFile ("seventh-packet-byte-count",
FileAggregator: :FORMATTED) ;

// Set the labels for this formatted output file.
fileHelper.Set2dFormat ("Time (Seconds) = %.3e\tPacket Byte Count = %.0f");

// Write the values generated by the probe.

fileHelper.WriteProbe ("ns3::Ipv4PacketProbe",
"/NodeList/+/$ns3::Ipv4L3Protocol/Tx",
"OutputBytes") ;

FileHelper ConfigureFile

The FileHelper’s ConfigureFile () function can be used to configure text files.

It has the following prototype:

11.2. Data Collection Helpers 57

ns-3 Model Library, Release ns-3.25

void ConfigureFile (const std::string &outputFileNameWithoutExtension,
enum FileAggregator::FileType fileType = FileAggregator::SPACE_SEPARATED) ;

It has the following arguments:

Argument Description
outputFileNameWithoutExtension | Name of output file to write with no extension.
fileType Type of file to write. The default type of file is space separated.

The FileHelper’s ConfigureFile () function configures text file related parameters for the file helper so that it
will create a file named outputFileNameWithoutExtension plus possible extra information from wildcard matches plus
”.txt” with values printed as specified by fileType. The default file type is space-separated.

An example of how to use this function can be seen in the seventh. cc code described above where it was used as
follows:

fileHelper.ConfigureFile ("seventh-packet-byte-count",
FileAggregator: :FORMATTED) ;

FileHelper WriteProbe

The FileHelper’s WriteProbe () function can be used to write values generated by probes to text files.
It has the following prototype:

void WriteProbe (const std::string &typeld,
const std::string &path,
const std::string &probeTraceSource);

It has the following arguments:

Argument Description

typeld The type ID for the probe to be created.
path Config path to access the trace source.
probeTraceSource | The probe trace source to access.

The FileHelper’s WriteProbe () function creates output text files generated by hooking the ns-3 trace source with
a probe created by the helper, and then writing the values from the probeTraceSource. The output file names will
have the text stored in the member variable m_outputFileNameWithoutExtension plus ”.txt”, and will consist of the
‘newValue’ at each timestamp.

If the config path has more than one match in the system because there is a wildcard, then one output file for each
match will be created. The output file names will contain the text in m_outputFileNameWithoutExtension plus the
matched characters for each of the wildcards in the config path, separated by dashes, plus ”.txt”. For example, if
the value in m_outputFileNameWithoutExtension is the string “packet-byte-count”, and there are two wildcards in the
path, then output file names like “packet-byte-count-0-0.txt” or “packet-byte-count-12-9.txt” will be possible as names

for the files that will be created.

An example of how to use this function can be seen in the seventh. cc code described above where it was used as
follows:

fileHelper.WriteProbe ("ns3::Ipv4PacketProbe",
"/NodeList/+/$ns3::Ipv4L3Protocol/Tx",
"OutputBytes") ;

58 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.25

Other Examples

File Helper Example

A slightly simpler example than the seventh.cc example can be found in
src/stats/examples/file-helper—example. cc. This example only uses the FileHelper.

The following text file with 2 columns of formatted values named file-helper—-example.txt was created using
the example. Only the first 10 lines of this file are shown here for brevity.

Time (Seconds) = 0.203 Count =1
Time (Seconds) = 0.702 Count = 2
Time (Seconds) = 1.404 Count = 3
Time (Seconds) = 2.368 Count = 4
Time (Seconds) = 3.364 Count = 5
Time (Seconds) = 3.579 Count = 6
Time (Seconds) = 5.873 Count = 7
Time (Seconds) = 6.410 Count = 8
Time (Seconds) = 6.472 Count = 9

In this example, there is an Emitter object that increments its counter according to a Poisson process and then emits
the counter’s value as a trace source.

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names: :Add ("/Names/Emitter", emitter);

Note that because there are no wildcards in the path used below, only 1 text file was created. This single text file is
simply named “file-helper-example.txt”, with no extra suffixes like you would see if there were wildcards in the path.

// Create the file helper.
FileHelper fileHelper;

// Configure the file to be written.
fileHelper.ConfigureFile ("file-helper-example",
FileAggregator: :FORMATTED) ;

// Set the labels for this formatted output file.
fileHelper.Set2dFormat ("Time (Seconds) = %.3e\tCount = %.0f");

// Write the values generated by the probe. The path that we
// provide helps to disambiguate the source of the trace.
fileHelper.WriteProbe ("ns3::Uinteger32Probe",
"/Names/Emitter/Counter",
"Output") ;

11.2.4 Scope and Limitations

Currently, only these Probes have been implemented and connected to the GnuplotHelper and to the FileHelper:
* BooleanProbe
* DoubleProbe
* Uinteger8Probe
* Uinteger16Probe

Uinteger32Probe

11.2. Data Collection Helpers 59

ns-3 Model Library, Release ns-3.25

* TimeProbe
 PacketProbe
* ApplicationPacketProbe
¢ Ipv4PacketProbe
These Probes, therefore, are the only Typelds available to be used in P1otProbe () and WriteProbe ().

In the next few sections, we cover each of the fundamental object types (Probe, Collector, and Aggregator) in more
detail, and show how they can be connected together using lower-level API.

11.3 Probes

This section details the functionalities provided by the Probe class to an ns-3 simulation, and gives examples on how
to code them in a program. This section is meant for users interested in developing simulations with the ns-3 tools and
using the Data Collection Framework, of which the Probe class is a part, to generate data output with their simulation’s
results.

11.3.1 Probe Overview

A Probe object is supposed to be connected to a variable from the simulation whose values throughout the experiment
are relevant to the user. The Probe will record what were values assumed by the variable throughout the simulation and
pass such data to another member of the Data Collection Framework. While it is out of this section’s scope to discuss
what happens after the Probe produces its output, it is sufficient to say that, by the end of the simulation, the user will
have detailed information about what values were stored inside the variable being probed during the simulation.

Typically, a Probe is connected to an ns-3 trace source. In this manner, whenever the trace source exports a new value,
the Probe consumes the value (and exports it downstream to another object via its own trace source).

The Probe can be thought of as kind of a filter on trace sources. The main reasons for possibly hooking to a Probe
rather than directly to a trace source are as follows:

* Probes may be dynamically turned on and off during the simulation with calls to Enable () and Disable ().
For example, the outputting of data may be turned off during the simulation warmup phase.

* Probes may perform operations on the data to extract values from more complicated structures; for instance,
outputting the packet size value from a received ns3::Packet.

* Probes register a name in the ns3::Config namespace (using Names: : Add ()) so that other objects may refer
to them.

* Probes provide a static method that allows one to manipulate a Probe by name, such as what is done in
ns2measure [Cic006]

Stat::put ("my_metric", ID, sample);

The ns-3 equivalent of the above ns2measure code is, e.g.

DoubleProbe: :SetValueByPath ("/path/to/probe", sample);

Creation

Note that a Probe base class object can not be created because it is an abstract base class, i.e. it has pure virtual
functions that have not been implemented. An object of type DoubleProbe, which is a subclass of the Probe class, will
be created here to show what needs to be done.

60 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.25

One declares a DoubleProbe in dynamic memory by using the smart pointer class (Ptr<T>). To create a DoubleProbe
in dynamic memory with smart pointers, one just needs to call the ns-3 method CreateObject ():

Ptr<DoubleProbe> myprobe = CreateObject<DoubleProbe> ();
The declaration above creates DoubleProbes using the default values for its attributes. There are four attributes in the
DoubleProbe class; two in the base class object DataCollectionObject, and two in the Probe base class:
¢ “Name” (DataCollectionObject), a StringValue
* “Enabled” (DataCollectionObject), a BooleanValue
e “Start” (Probe), a TimeValue
* “Stop” (Probe), a TimeValue
One can set such attributes at object creation by using the following method:

Ptr<DoubleProbe> myprobe = CreateObjectWithAttributes<DoubleProbe> (
"Name", StringValue ("myprobe"),
"Enabled", BooleanValue (false),
"Start", TimeValue (Seconds (100.0)),
"Stop", TimeValue (Seconds (1000.0)));

Start and Stop are Time variables which determine the interval of action of the Probe. The Probe will only output data
if the current time of the Simulation is inside of that interval. The special time value of O seconds for Stop will disable
this attribute (i.e. keep the Probe on for the whole simulation). Enabled is a flag that turns the Probe on or off, and
must be set to true for the Probe to export data. The Name is the object’s name in the DCF framework.

Importing and exporting data

ns-3 trace sources are strongly typed, so the mechanisms for hooking Probes to a trace source and for exporting data
belong to its subclasses. For instance, the default distribution of ns-3 provides a class DoubleProbe that is designed to
hook to a trace source exporting a double value. We’ll next detail the operation of the DoubleProbe, and then discuss
how other Probe classes may be defined by the user.

11.3.2 DoubleProbe Overview

The DoubleProbe connects to a double-valued ns-3 trace source, and itself exports a different double-valued ns-3 trace
source.

The following code, drawn from src/stats/examples/double-probe—example. cc, shows the basic op-
erations of plumbing the DoubleProbe into a simulation, where it is probing a Counter exported by an emitter object
(class Emitter).

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names: :Add ("/Names/Emitter", emitter);

Ptr<DoubleProbe> probel = CreateObject<DoubleProbe> ();

// Connect the probe to the emitter's Counter
bool connected = probel->ConnectByObject ("Counter", emitter);

The following code is probing the same Counter exported by the same emitter object. This DoubleProbe, however,
is using a path in the configuration namespace to make the connection. Note that the emitter registered itself in the
configuration namespace after it was created; otherwise, the ConnectByPath would not work.

11.3. Probes 61

ns-3 Model Library, Release ns-3.25

Ptr<DoubleProbe> probe2 = CreateObject<DoubleProbe> ();

// Note, no return value 1is checked here
probe2->ConnectByPath ("/Names/Emitter/Counter");

The next DoubleProbe shown that is shown below will have its value set using its path in the configuration namespace.
Note that this time the DoubleProbe registered itself in the configuration namespace after it was created.

Ptr<DoubleProbe> probe3 = CreateObject<DoubleProbe> ();
probe3->SetName ("StaticallyAccessedProbe");

// We must add it to the config database
Names: :Add ("/Names/Probes", probe3->GetName (), probe3);

The emitter’s Count() function is now able to set the value for this DoubleProbe as follows:

void
Emitter: :Count (void)

{

m_counter += 1.0;
DoubleProbe: :SetValueByPath ("/Names/StaticallyAccessedProbe", m_counter);

}

The above example shows how the code calling the Probe does not have to have an explicit reference to the Probe,
but can direct the value setting through the Config namespace. This is similar in functionality to the Stat::Put method
introduced by ns2measure paper [Cic06], and allows users to temporarily insert Probe statements like printf statements
within existing ns-3 models. Note that in order to be able to use the DoubleProbe in this example like this, 2 things
were necessary:

1. the stats module header file was included in the example .cc file
2. the example was made dependent on the stats module in its wscript file.
Analogous things need to be done in order to add other Probes in other places in the ns-3 code base.

The values for the DoubleProbe can also be set using the function DoubleProbe::SetValue(), while the values for the
DoubleProbe can be gotten using the function DoubleProbe::GetValue().

The DoubleProbe exports double values in its “Output” trace source; a downstream object can hook a trace sink
(NotifyViaProbe) to this as follows:

connected = probel->TraceConnect ("Output", probel->GetName (), MakeCallback (&NotifyViaProbe));

11.3.3 Other probes

Besides the DoubleProbe, the following Probes are also available:
 Uinteger8Probe connects to an ns-3 trace source exporting an uint8_t.
» Uinteger16Probe connects to an ns-3 trace source exporting an uint16_t.
 Uinteger32Probe connects to an ns-3 trace source exporting an uint32_t.
 PacketProbe connects to an ns-3 trace source exporting a packet.

* ApplicationPacketProbe connects to an ns-3 trace source exporting a packet and a socket address.

Ipv4PacketProbe connects to an ns-3 trace source exporting a packet, an IPv4 object, and an interface.

62 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.25

11.3.4 Creating new Probe types

To create a new Probe type, you need to perform the following steps:
* Be sure that your new Probe class is derived from the Probe base class.

* Be sure that the pure virtual functions that your new Probe class inherits from the Probe base class are imple-
mented.

* Find an existing Probe class that uses a trace source that is closest in type to the type of trace source your Probe
will be using.

» Copy that existing Probe class’s header file (.h) and implementation file (.cc) to two new files with names
matching your new Probe.

» Replace the types, arguments, and variables in the copied files with the appropriate type for your Probe.

* Make necessary modifications to make the code compile and to make it behave as you would like.

11.3.5 Examples

Two examples will be discussed in detail here:
* Double Probe Example
» IPv4 Packet Plot Example

Double Probe Example

The double probe example has been discussed previously. The example program can be found in
src/stats/examples/double-probe-example.cc. To summarize what occurs in this program, there is
an emitter that exports a counter that increments according to a Poisson process. In particular, two ways of emitting
data are shown:

1. through a traced variable hooked to one Probe:

TracedValue<double> m_counter; // normally this would be integer type

2. through a counter whose value is posted to a second Probe, referenced by its name in the Config system:

void

Emitter::Count (void)

{
NS_LOG_FUNCTION (this);
NS_LOG_DEBUG ("Counting at " << Simulator::Now () .GetSeconds ());
m_counter += 1.0;
DoubleProbe: :SetValueByPath ("/Names/StaticallyAccessedProbe", m_counter);
Simulator::Schedule (Seconds (m_var->GetValue ()), &Emitter::Count, this);

}

Let’s look at the Probe more carefully. Probes can receive their values in a multiple ways:
1. by the Probe accessing the trace source directly and connecting a trace sink to it
2. by the Probe accessing the trace source through the config namespace and connecting a trace sink to it
3. by the calling code explicitly calling the Probe’s SetValue() method
4. by the calling code explicitly calling SetValueByPath (“/path/through/Config/namespace”, ...)

11.3. Probes 63

ns-3 Model Library, Release ns-3.25

The first two techniques are expected to be the most common. Also in the example, the hooking of a normal callback
function is shown, as is typically done in ns-3. This callback function is not associated with a Probe object. We’ll call

this case 0) below.

// This 1s a function to test hooking a raw function to the trace source
void
NotifyViaTraceSource (std::string context, double oldvVal, double newVal)

{
NS_LOG_DEBUG ("context: " << context << " old " << oldvVal << " new " << newVal);

First, the emitter needs to be setup:

Ptr<Emitter> emitter = CreateObject<Emitter> ();
Names: :Add ("/Names/Emitter", emitter);

// The Emitter object is not associated with an ns—-3 node, so
// it won't get started automatically, so we need to do this ourselves
Simulator: :Schedule (Seconds (0.0), &Emitter::Start, emitter);

The various DoubleProbes interact with the emitter in the example as shown below.
Case 0):

// The below shows typical functionality without a probe

// (connect a sink function to a trace source)

//

connected = emitter->TraceConnect ("Counter", "sample context", MakeCallback
NS_ASSERT_MSG (connected, "Trace source not connected");

case 1):

/7
// Probel will be hooked directly to the Emitter trace source object

/7

// probel will be hooked to the Emitter trace source
Ptr<DoubleProbe> probel = CreateObject<DoubleProbe> ();

// the probe's name can serve as 1its context in the tracing
probel->SetName ("ObjectProbe™);

// Connect the probe to the emitter's Counter
connected = probel->ConnectByObject ("Counter", emitter);
NS_ASSERT_MSG (connected, "Trace source not connected to probel");

case 2):

//

// Probe2 will be hooked to the Emitter trace source object by
// accessing it by path name in the Config database

//

// Create another similar probe; this will hook up via a Config path
Ptr<DoubleProbe> probe2 = CreateObject<DoubleProbe> ();
probe2->SetName ("PathProbe");

// Note, no return value is checked here
probe2->ConnectByPath ("/Names/Emitter/Counter");

case 4) (case 3 is not shown in this example):

(&NotifyViaTraceSou

64 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.25

//

// Probe3 will be called by the emitter directly through the
// static method SetValueByPath().

//

Ptr<DoubleProbe> probe3 = CreateObject<DoubleProbe> ();
probe3->SetName ("StaticallyAccessedProbe");

// We must add it to the config database

Names: :Add ("/Names/Probes", probe3->GetName (), probe3);

And finally, the example shows how the probes can be hooked to generate output:

// The probe itself should generate output. The context that we provide

// to this probe (in this case, the probe name) will help to disambiguate

// the source of the trace

connected = probe3->TraceConnect ("Output",
"/Names/Probes/StaticallyAccessedProbe/Output",
MakeCallback (&NotifyViaProbe));

NS_ASSERT_MSG (connected, "Trace source not .. connected to probe3 Output");

The following callback is hooked to the Probe in this example for illustrative purposes; normally, the Probe would be
hooked to a Collector object.

// This is a function to test hooking it to the probe output

void

NotifyViaProbe (std::string context, double oldval, double newVal)
{

NS_LOG_DEBUG ("context: " << context << " old " << oldVal << " new " << newVal);

IPv4 Packet Plot Example

The IPv4 packet plot example is based on the fifth.cc example from the ns-3 Tutorial. It can be found in
src/stats/examples/ipv4—-packet-plot—-example.cc

node 0 node 1
o ——— + o +
| ns—-3 TCP | | ns—-3 TCP |
o + o +
| 10.1.1.1 | \ 10.1.1.2 \
o ——— + o ——— +
| point-to-point | | point-to-point |
o + o +

\ I
e +

We’ll just look at the Probe, as it illustrates that Probes may also unpack values from structures (in this case, packets)
and report those values as trace source outputs, rather than just passing through the same type of data.

There are other aspects of this example that will be explained later in the documentation. The two types of data that
are exported are the packet itself (Output) and a count of the number of bytes in the packet (OutputBytes).

TypeId
Ipv4PacketProbe: :GetTypeld ()

{
static TypelId tid = Typeld ("ns3::Ipv4PacketProbe™)

.SetParent<Probe> ()
.AddConstructor<Ipv4PacketProbe> ()
.AddTraceSource ("Output",

11.3. Probes 65

ns-3 Model Library, Release ns-3.25

"The packet plus its IPv4 object and interface that serve as the output for th:
MakeTraceSourceAccessor (&Ipv4PacketProbe::m_output))
.AddTraceSource ("OutputBytes",
"The number of bytes in the packet",
MakeTraceSourceAccessor (&Ipv4PacketProbe::m_outputBytes))
’
return tid;

}

When the Probe’s trace sink gets a packet, if the Probe is enabled, then it will output the packet on its Output trace
source, but it will also output the number of bytes on the OutputBytes trace source.

void
Ipv4PacketProbe: :TraceSink (Ptr<const Packet> packet, Ptr<Ipv4> ipv4, uint32_t interface)
{
NS_LOG_FUNCTION (this << packet << ipv4 << interface);
if (IsEnabled ())
{

m_packet = packet;
m_ipv4 = ipv4;
m_interface = interface;

m_output (packet, ipv4, interface);

uint32_t packetSizeNew = packet->GetSize ();
m_outputBytes (m_packetSizeOld, packetSizeNew);
m_packetSizeOld = packetSizeNew;

11.3.6 References

11.4 Collectors

This section is a placeholder to detail the functionalities provided by the Collector class to an ns-3 simulation, and
gives examples on how to code them in a program.

Note: As of ns-3.18, Collectors are still under development and not yet provided as part of the framework.

11.5 Aggregators

This section details the functionalities provided by the Aggregator class to an ns-3 simulation. This section is meant
for users interested in developing simulations with the ns-3 tools and using the Data Collection Framework, of which
the Aggregator class is a part, to generate data output with their simulation’s results.

11.5.1 Aggregator Overview

An Aggregator object is supposed to be hooked to one or more trace sources in order to receive input. Aggregators are
the end point of the data collected by the network of Probes and Collectors during the simulation. It is the Aggregator’s
job to take these values and transform them into their final output format such as plain text files, spreadsheet files, plots,
or databases.

66 Chapter 11. Data Collection

ns-3 Model Library, Release ns-3.25

Typically, an aggregator is connected to one or more Collectors. In this manner, whenever the Collectors’ trace sources
export new values, the Aggregator can process the value so that it can be used in the final output format where the data
values will reside after the simulation.

Note the following about Aggregators:

* Aggregators may be dynamically turned on and off during the simulation with calls to Enable () and
Disable (). For example, the aggregating of data may be turned off during the simulation warmup phase,
which means those values won’t be included in the final output medium.

* Aggregators receive data from Collectors via callbacks. When a Collector is associated to an aggregator, a call
to TraceConnect is made to establish the Aggregator’s trace sink method as a callback.

To date, two Aggregators have been implemented:
* GnuplotAggregator
* FileAggregator

11.5.2 GnuplotAggregator

The GnuplotAggregator produces output files used to make gnuplots.

The GnuplotAggregator will create 3 different files at the end of the simulation:
* A space separated gnuplot data file
¢ A gnuplot control file

* A shell script to generate the gnuplot

Creation

An object of type GnuplotAggregator will be created here to show what needs to be done.

One declares a GnuplotAggregator in dynamic memory by using the smart pointer class (Ptr<T>). To create a Gnu-
plotAggregator in dynamic memory with smart pointers, one just needs to call the zns-3 method CreateObject ().
The following code from src/stats/examples/gnuplot—-aggregator—-example.cc shows how to do
this:

string fileNameWithoutExtension = "gnuplot-aggregator";

// Create an aggregator.
Ptr<GnuplotAggregator> aggregator =
CreateObject<GnuplotAggregator> (fileNameWithoutExtension);

The first argument for the constructor, fileNameWithoutExtension, is the name of the gnuplot related files to write with
no extension. This GnuplotAggregator will create a space separated gnuplot data file named “gnuplot-aggregator.dat”,
a gnuplot control file named “gnuplot-aggregator.plt”, and a shell script to generate the gnuplot named + “gnuplot-
aggregator.sh”.

The gnuplot that is created can have its key in 4 different locations:
* No key
» Key inside the plot (the default)
* Key above the plot
* Key below the plot

11.5. Aggregators 67

ns-3 Model Library, Release ns-3.25

The following gnuplot key location enum values are allowed to specify the key’s position:

enum KeyLocation {
NO_KEY,
KEY_INSIDE,
KEY_ABOVE,
KEY_BELOW

}i

If it was desired to have the key below rather than the default position of inside, then you could do the following.

aggregator->SetKeyLocation (GnuplotAggregator: :KEY_BELOW) ;

Examples

One example will be discussed in detail here:

* Gnuplot Aggregator Example

Gnuplot Aggregator Example

An example that exercises the GnuplotAggregator can be foundin src/stats/examples/gnuplot-aggregator—example.c
The following 2-D gnuplot was created using the example.
This code from the example shows how to construct the GnuplotAggregator as was discussed above.

void Create2dPlot ()
{

using namespace std;

string fileNameWithoutExtension = "gnuplot—-aggregator";
string plotTitle = "Gnuplot Aggregator Plot";
string plotXAxisHeading = "Time (seconds)";

string plotYAxisHeading = "Double Values";

string plotDatasetLabel = "Data Values";

string datasetContext = "Dataset/Context/String";

// Create an aggregator.
Ptr<GnuplotAggregator> aggregator =
CreateObject<GnuplotAggregator> (fileNameWithoutExtension);

Various GnuplotAggregator attributes are set including the 2-D dataset that will be plotted.

// Set the aggregator's properties.

aggregator->Set